GOL717 - Conception de systèmes prédictifs pour l’entreprise
À la fin de ce cours, l’étudiante ou l'étudiant sera en mesure de concevoir des systèmes prédictifs destinés aux entreprises de production de biens et services. L’environnement moderne de production exige des solutions qui anticipent l’évolution du marché tout en identifiant les paramètres qui contribuent à l’amélioration de la productivité. Les systèmes prédictifs permettent la prédiction des résultats futurs en évaluant des ensembles de données historiques et transactionnelles.
Conception par intégration et adaptation : méthode factorielle, méthode de transformation orthogonale, correspondances multiples, modèle régressif, apprentissage par arbre de décision. Technologies de classification automatique : naïve Bayes, K plus proches voisins, réseaux de neurones et machines à vecteurs de support.
Critères de conception : méthodes d’apprentissage supervisé et non supervisé. Sur-apprentissage et sous-apprentissage. Apprentissage paramétrique et non paramétrique. Apprentissage profond.
Séances de laboratoire axées sur la conception de systèmes prédictifs pour le secteur manufacturier et des services. Création d’outils de prédiction par la sélection et l’adaptation et l’extension des techniques vues en classe.