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Abstract

Systems for still-to-video face recognition (FR) seek to detect the presence of target individuals based on

reference facial still images or mug-shots. These systems encounter several challenges in video surveillance

applications due to variations in capture conditions (e.g., pose, scale, illumination, blur and expression)

and to camera inter-operability. Beyond these issues, few reference stills are available during enrollment

to design representative facial models of target individuals. Systems for still-to-video FR must therefore

rely on adaptation, multiple face representation, or synthetic generation of reference stills to enhance the

intra-class variability of face models. Moreover, many FR systems only match high quality faces captured

in video, which further reduces the probability of detecting target individuals. Instead of matching faces

captured through segmentation to reference stills, this paper exploits Adaptive Appearance Model Tracking

(AAMT) to gradually learn a track-face-model for each individual appearing in the scene. The Sequential

Karhunen-Loeve technique is used for online learning of these track-face-models within a particle filter–based

face tracker. Meanwhile, these models are matched over successive frames against the reference still images

of each target individual enrolled to the system, and then matching scores are accumulated over several

frames for robust spatiotemporal recognition. A target individual is recognized if scores accumulated for

a track-face-model over a fixed time surpass some decision threshold. The main advantage of AAMT over

traditional still-to-video FR systems is the greater diversity of facial representation that may be captured

during operations, and this can lead to better discrimination for spatiotemporal recognition. Compared

to state-of-the-art adaptive biometric systems, the proposed method selects facial captures to update an

individual’s face model more reliably because it relies on information from tracking. Simulation results

obtained with the Chokepoint video dataset indicate that the proposed method provides a significantly

higher level of performance compared state-of-the-art systems when a single reference still per individual

is available for matching. This higher level of performance is achieved when the diverse facial appearances

that are captured in video through AAMT correspond to that of reference stills.
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1. Introduction

Automatic face recognition (FR) is increasingly employed by public safety organizations to detect in-

dividuals of interest for enhanced security and situational awareness [1]. In decision support systems for

video surveillance (VS), the human operator may rely on FR to detect the presence of target individuals

captured over a network of surveillance cameras. Accurate and timely responses are required to recognize

faces captured under semi-controlled and uncontrolled conditions, as found at various security checkpoints,

inspection lanes, portals, etc. Faces captured under these conditions are subject to a variety of nuisance

factors, including changes in illumination, pose, scale, expression, occlusion, and blur [2], and to camera

interoperability issues. Despite these challenges, it is generally possible to exploit spatiotemporal informa-

tion (e.g., tracking and multi-frame fusion) and camera arrays to improve robustness and accuracy in VS

applications [1].

Face recognition in video surveillance is employed in a range of still-to-video and video-to-video appli-

cations. The still-to-video FR applications typically need to match faces in low-quality videos captured

under unconstrained conditions against high quality still face images, whereas in video-to-video query video

sequences are matched against a set of target video sequences [3]. Watch list (WL) screening is an important

still-to-video FR application [4], where given one or few reference still images, FR is applied to WL screening

seek to detect the presence of target individuals enrolled to the system. It is assumed that facial regions of

interests (ROIs) are extracted from reference still images (high quality mug shots or ID photos) that were

taken under controlled condition to design gallery-face-models. The gallery-face-model of an individual is

defined as a set of one or more reference ROI patterns (used for a template matching system), or a set of

parameters estimated using reference ROI patterns (for a pattern classification system). Then, during opera-

tions, ROI patterns of faces captured in videos are matched against the gallery-face-model of each individual

enrolled to the WL gallery. The operator is alerted if any matching score surpasses an individual-specific

threshold [1].

Systems for still-to-video FR applied to VS are typically modeled in terms of independent detection

problems [5], each one implemented using template matching or a one- or two-class classifier per individual

followed by thresholding. These individual-specific detectors are designed with reference ROI patterns from

target, and possibly non-target individuals (from the cohort or universal background). The advantages of

such modular architectures include the ease with which face models may be added, updated and removed

from the systems, and the possibility of specializing feature subsets and decision thresholds to each specific

individual [5].
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Still-to-video FR is particularly challenging because few reference stills are available for system design

(face modeling), and because ROIs captured with still cameras (during enrollment) have different properties

than those captured with video cameras (during operations) [1]. In pattern recognition literature, the

situation where only one reference pattern is available for system design is referred to as a single sample per

person (SSPP) problem [6]. This paper seeks to address the SSPP problem found in still-to-video FR with

WL screening applications in mind.

Given a limited number of reference images, it is difficult to design representative gallery-face-models.

For instance, when applying a common template matching (TM) system to WL screening, discriminant

and compact features are extracted from reference facial ROIs to form template ROI patterns. Then the

same features are extracted from faces captured in video frames, and matched against these templates. The

performance of this still-to-video FR system may be poor, since templates provide a limited representation of

faces to be recognized during operations [7, 8]. To enhance gallery-face-models, techniques for adaptation,

multiple-representation, synthetic generation, and enlarging the training data (using some auxiliary set)

may be used to represent different face capture conditions [7, 8, 9]. These techniques however may fail to

provide more representative gallery-face-models since they incorporate limited information on the intra-class

variations and uncertainties of a face in the complex operational environment. The update and management

of template galleries with faces captured during operations may improve intra-class variability of gallery-

face-models and the FR performance, though these adaptive methods may corrupt the gallery-face-model if

incorrectly updated [7, 9].

Spatiotemporal FR systems rely on tracking to capture temporal information, and have been shown

to improved performance over the traditional FR systems in VS [1, 2]. Face tracking (FT) can play two

important functions in video FR – (1) regroup ROIs of a person and integrate evidence (e.g., matching scores)

from each frame and from multiple cameras of a video stream in order to reduce ambiguity of predictions

[1, 2]; (2) confirm the detection of highly confident facial regions in a frame for the segmentation process

[10]. Though many algorithms have been proposed for object tracking in general, ones based on adaptive

appearance modeling are well suited for FT. They learn internal track-face-models that adapts with the

facial changes in the environment for enhanced data association [11, 12].

Though track-face-models have been exploited for accurate data association in FT, to our knowledge

these models have not been used for matching in video–based FR. Track-face-models have several potential

advantages over gallery-face-models in still-to-video FR. A track-face-model may integrate a greater diversity

of information on the variations of face appearance in a scene than with gallery-face-model produced with
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one or few reference stills. The facial information incorporated in a track-face-model is captured from the

specific operational scene (i.e., camera viewpoint) via tracking, which cannot be induced in a gallery-face-

model that is produced from a reference still captured under controlled conditions, even if the model is

enhanced through adaptation, synthetic generation, multi-face representations, or by enlarging the training

set using non-target ROI patterns. Furthermore, by matching track-face-models (instead of a single ROIs

from segmentation) with gallery-face-models, FR performance can be improved even if a limited number

of reference stills are used to generate gallery-face-models. Since the track-face-model is updated within a

tracker, it is more likely to update that model with faces from the same person in a scene without employing

any additional gallery management technique. This is a challenging problem within adaptive biometric

systems by themselves.

This paper presents a still-to-video FR system called the Adaptive Appearance Model Tracker-based

Face Recognition (AAMT-FR), where a track-face-model is learned online (during operations) for each

different person appearing in a camera view point. For online learning, Sequential Karhunen–Loeve method

[13] is used within a particle filter–based tracker. At each frame, the track-face-model for each different

person in the scene is updated and matched against the gallery-face-model of every individual enrolled to

the system. Given that face tracking allows to regroup faces of each person, the matching scores for a person

are accumulated over a facial trajectory1, and compared with an individual–specific decision threshold for

robust spatiotemporal recognition. During operations, track-face-models are updated incrementally, and

improve their representativeness by incorporating diverse information on the facial appearance from the

scene. Concurrently, the tracking information used to accumulate the matching scores over time, also

increases intra-class variability of face-track-models and improves FR discrimination.

Performance of the proposed system is evaluated with a generic still-to-video FR system for WL screening

applications, where each gallery-face-model corresponds to a template (ROI pattern) extracted a priori from

a high quality reference face still. Simulation results were obtained using video form the Chokepoint dataset

[15], where an array of three cameras was placed above several portals to capture individuals walking through.

These videos capture faces of individuals under semi–and uncontrolled conditions. Experiments compare

the transaction– and trajectory–level performance of the AAMT-FR with respect to several stat-of-the-art

FR systems.

The organization of this paper is as follows. Section 2 presents a generic still-to-video FR system as needed

for WL screening applications. Given the limitation of using a single reference still for designing gallery-face-

1A trajectory is defined as a set of facial ROIs that correspond to a same high quality track of an individual across consecutive
frames [14].
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model, a brief review on state-of-the-art adaptive biometric systems, face-modeling techniques developed

for the SSPP problem, and spatiotemporal FR techniques are also presented in this section. The proposed

AAMT-FR system for still-to-video FR is described in Section 3. In Section 4, the experimental methodology

(dataset, protocol, and performance metrics) for validation of FR systems is described. Benchmarking results

are presented and discussed in Section 5 with WL screening applications in mind.

2. Still-to-Video Face Recognition

2.1. A generic system for spatiotemporal face recognition

The problem addressed in this paper is the design of a robust still-to-video FR system for WL screening,

where individuals of interest must be detected under semi- or controlled conditions across a network of

surveillance cameras. Figure 1 shows a generic system for still-to-video FR according to a track-and-classify

approach.

Figure 1: A generic system for still-to-video face recognition.

The system first performs segmentation to isolate the regions of interest (ROIs) corresponding to faces

in each frame. During enrollment process, from one or more reference ROIs of a target individual, features

are extracted and combined into reference ROI patterns to design user-specific gallery-face-models stored

in the gallery. A gallery-face-model consists of a set of one or more templates or parameters of a classifier

designed using reference ROI patterns. During operations, each camera captures video streams of 2D images

or frames It, and provides a particular viewpoint of individuals populating the scene. For each ROI, the

same features are extracted and combined into a input ROI pattern for classification and to initiate tracking

for new persons in the scene.
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The face tracking module associates faces captured in successive frames to a same person (to define

trajectories) and can also confirm ROIs found through segmentation. The classification module computes

similarity of input ROI patterns against gallery-face-models. In spatiotemporal recognition, the fusion mod-

ule accumulates the matching scores for a trajectory according to each gallery-face-model, and compares

these accumulations with decision threshold for robust recognition. It outputs a list of likely target individ-

uals associated with each trajectory. The main functions performed by the still-to-video FR system shown

in Figure 1 (segmentation, tracking, classification, and fusion) are described in more detail below.

The segmentation module (also referred to as the face detection module) allows isolating ROIs containing

a face in each frame. At a discrete time t, the input for the segmentation module is a video frame It and

output is the set of ROIs delimiting faces in It, if any. The segmentation module may detect new faces at

different locations than others, and corresponding ROIs are needed to initiate new tracks. Some pioneering

work on face detection are presented in [16, 17, 18]. A common limitation of segmentation algorithms is

their complexity for the video surveillance applications, which may be overcome with the Viola and Jones

face detector [16].

The face tracking module initiates a new track once the segmentation module detects a new face in a

different location to others. After the first detection at frame It, the tracker generates an internal track-

face-model for an individual k, and seek to estimate its states Xk
t+1, ...,X

k
∞ in future frames. A state Xk

t

is typically represented as the set {xk
t , y

k
t , w

k
t , h

k
t }, where the symbols xk

t , y
k
t , w

k
t and hk

t represent the x

center location, y center location, width, and height of the bounding box of face k, respectively, for frame

It. During tracking, several states for a face may be predicted, each one representing a candidate region of a

face in a frame. Some features used for face modeling are extracted from each of the candidate regions and

are assembled into input patterns for data association with the track-face-model. The state Xk
t that achieves

the highest matching score is considered as the actual state for face k on frame It. The state information

Xk
t is then used to predict the possible states of the face in the next frame It+1. The states selected for face

k provides temporal information about that face, such as the position and size in the frames, speed, and

acceleration.

The tracker assigns a unique identifier for each face track so that the tracking module can follow the

movement of a face in a sequence. Facial trajectories are formed along these tracks. When the track quality

falls below some threshold, the track is dropped automatically. Track quality is often measured by comparing

the predicted and new locations of a face in successive frame, or by measuring the difference between the

appearances of a face at its track-face-model. Decisions to drop a track can be improved by cumulating the
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estimations of the tracking quality over several consecutive frames.

Adaptive appearance model-based trackers (AAMT) are shown to be efficient in FT [11, 12]. AAMTs in

literature are categorized into two main types: generative and discriminative. Generative types ([19], [20],

[21]) learn the appearance of faces and track them by searching for the region most similar to the target face

appearances in each frame. They do not exploit any background information for data association. With

discriminative types [22, 23, 24], trackers localize the target using a classifier that learns a decision boundary

between the appearance of target and that of background and non-target ROI patterns. The limitations

of AAMT are that they may computationally expensive and carry the risk of adapting models to other

targets or background scenes. However, AAMT has been shown to efficiently address current challenges of

FT because of using track-face-model that is updated incrementally.

The face classification module seeks to measure the similarity between input ROI patterns and the

gallery-face-models of individuals enrolled to the system. During enrollment of a target individual, ROIs are

extracted from still images captured under controlled environment. For each one, discriminant features are

extracted and assembled into reference ROI patterns. ROI patterns are extracted by using some holistic or

local face descriptors such as Local Binary Pattern (LBP), Principle Component Analysis (PCA), Histogram

of Oriented Gradients (HOG), etc. [2]. During operations, ROIs are detected in successive frames It of a

video, and then the same features are extracted into an input ROI pattern. Matching is typically performed

using a template matcher or a pattern classifier. The resulting score St(k, l) indicates the likelihood that

an input ROI captured in frame It corresponds to the gallery-face-model of target individual l enrolled to

the system, for l = 1, 2, ..., L along face track k. In TM, the gallery-face-model is defined as one or more

templates extracted from the reference ROI patterns, while in pattern classification, it is defined as set of

parameters estimated from the training ROI patterns of the gallery.

The fusion module integrates the responses from the tracking and classification over several frames,

and possibly multiple-cameras, and outputs the predicted list of target individuals in the scene. If an

accumulated score for a trajectory surpasses a individual-specific decision threshold, the corresponding

individual of interest is considered to be detected. This trajectory-based analysis is typically used by the

surveillance system to reduce ambiguity in video-based FR [14].

For simplicity, this paper considers a common still-to-video FR system based on template matching (TM),

where only one reference still is available to design the gallery-face-model [8]. In addition, it is assumed

that the gallery-face-model of each target individual l = 1, ..., L consists of a single reference pattern bl with

features extracted from the single ROI captured in the reference still. For each input ROI r (r = 1, ..., R)
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detected in a frame It, an input ROI pattern akt = (ak1 , ..., a
k
p) linked to face track k is extracted and

compared using some similarity measure against all reference patterns bl = (b1, ..., bp)
l of target individual l

in a p-dimensional subspace �p. Algorithmic description for a track-and-classify approach for still-to-video

FR using TM is given in Algorithm 1. It exploits FT to regroup input ROIs of each person, and accumulates

their respective scores for robust spatiotemporal recognition. This algorithm implements the system termed

as TM-FR in this paper.

Algorithm 1: A track-and-classify approach to still-to-video FR using TM.

Input: Input frames {It : t = 1, ...,∞}. Gallery-face-models {bl : l = 1, ..., L} of target individuals
enlisted in the gallery

Output: List of likely individuals from watch list in the scene
1 for each It with t = 1, ...,∞ frames do
2 Apply segmentation to detect ROIs corresponding to faces in a frame
3 // Track Initialization

for each {ROIrt : r = 0, ..., R} do
4 if the ROI is located in a different place than the existing tracks then
5 Increment the number of tracks, K ← K + 1

Compute a new track-face-model mk
t with the ROI for the newly initiated face track K

6 // Tracking

for each track-face-model mk
t with k = 1, ...,K do

7 Compute the state Xk
t of the face in frame It using tracking

Update the track-face-model mk
t using the new state information Xk

t

8 // Classification

for each each input pattern ak
t associated with Xk

t with k = 1, ...,K do

9 for each gallery-face-model bl with l = 1, ..., L do

10 Compute similarity (score) between akt and bl by St(k, l) = similarity(akt ,b
l).

11 // Fusion
for k = 1 to K do

12 for l = 1 to L do

13 Accumulate scores over W consecutive frames by acc St(k, l) =
∑t

i=t−W Si(k, l).

14 if acc St(k, l) ≥ γl then
15 Detect or predict the presence of watch list individual l

2.2. Adaptive face modeling

Adaptive face modeling techniques seek to improve and maintain FR performance under complex capture

conditions by updating facial models over time using operational data [7]. These techniques are divided

into two categories: self-update and co-update [7]. Self-update techniques apply a second (usually higher)

update-threshold to each matching score to select ROI patterns to update the corresponding gallery-face-

model [9, 14]. The co-update techniques seek corroboration of scores from two or more matchers, typically
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on multiple traits (e.g., face and finger prints) for cross-updating [25, 26].

The main limitation of self-update method is that it carries the risk of incorrectly updating, and recog-

nition of target individual with the update-threshold selection. Moreover, an overly conservative threshold

may allow to limit false updates, but the system will never adapt to changes in the environment. Conversely,

a less conservative update threshold may lead to an increase in the number of false updates and deteriorates

system performance. Both the situations adversely affect to the performance of the FR system. For example,

to update templates with reliable ROI patterns, the ensemble–based system proposed by De la Torrea et al.

[14] exploits face trajectories. If accumulated matching scores within the trajectory surpasses a predefined

threshold, all the ROI patterns related to that trajectory are selected for updating the gallery-face-model.

However, threshold selection is still sensitive. Co-update methods perform better in capturing large intra-

class variations of the input data without relaxing acceptance threshold by using multiple traits. However,

collecting information for multiple traits, such as finger print, along with the faces, may not be feasible in

WL screening, where capture is performed without user cooperation.

2.3. SSPP techniques for still-to-video face recognition

To improve the limited representativeness of gallery-face-models, several techniques have been proposed

in SSPP literature. They are divided into three categories: multiple face representations, synthetic face

generation, and enlarging the training sets using auxiliary data [6].

In multiple face representations, different discriminant features may be extracted from a reference still

image to enhance the gallery-face-models. Each ROI may be extracted using different patches or sub-images

to provide multiple representations of a face [27]. Several feature extraction techniques have been proposed

in computer vision and in pattern recognition literature for FR, such as LBP, HOG, and PCA, used for

FR [27, 28]. Key issues for FR with multiple representations is the fusion of representations and system

complexity.

In synthetic generation, multiple virtual face images are generated from each single reference still to

enhance gallery-face-models. Multiple virtual views are synthesized by linear shape prediction [29], mesh

warping [30], morphing [31], symmetry property [32], partitioning a face in several sub-images [33], affine

transformation [34], noise perturbation [35], shifting [36], and active appearance model [37]. A recurring

problem with the synthetic generation is that they need to locate facial components reliably to determine the

pose angle for pose compensation. Moreover, these methods need prior knowledge to guide the generation

of virtual views, though the quality and realism of the virtual views may not be guaranteed. Synthetic
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generation may fail to predict many realistic and unobserved variations in face appearance in a real-world

scene.

When enlarging training set using auxiliary data sets, a generic data set containing multiple ROI pat-

terns from other individuals than target individuals (in the gallery), and possibly under different capture

conditions, is exploited to assist in learning the gallery-face-models. Artificial neural network (ANN) [38],

Fishers Linear Discriminant [39], 3D modeling [40], and sparse variation dictionary learning [41] are ex-

amples of techniques applied for face modeling using auxiliary data sets. All these methods assume that

the intra-personal variation of faces in all humans is similar. The intra-personal variation for a face of

an individual can therefore be approximated by using a generic set containing multiple ROIs per person.

However, variation of face appearance in a generic set is often quite different from that of the single ROI set.

Therefore, the discriminant model learned from the generic set is more suitable to distinguish the persons

in the generic set, rather than those in the single ROI pattern set.

2.4. Spatiotemporal fusion

Spatiotemporal FR approaches merge spatial information (e.g., face appearance) with the sequential

variations presented over time [1]. These systems exploit tracking to follow the movement of person or

faces in a scene, and ideally defines a track per different person. A trajectory is defined as a set of ROIs

that correspond to a high quality track of same individual appearing in the camera viewpoint. Spatiotem-

poral recognition often accumulates matching scores for ROIs across trajectories to improve accuracy and

robustness.

Several recent methods have been proposed for spatiotemporal face recognition [1, 42]. In [43], the spatial

and temporal information are merged within an Hidden Markov Model (HMM) by modeling the probability

distributions of the motions, and by selecting the highest likelihood score provided by the HMM to decide

the identity in the test video sequences. In [44], facial ROIs are divided in several sub-regions, and use an

estimation of optical flow to weight the importance of each of the sub-regions when estimating posterior

probabilities. This technique considers the motion between each pair of frames, including information

from changes of expression. In [45], an appearance-based approach is proposed that estimates the joint

posterior distribution of the motion vector and identity variable by combining adaptive observation model

and adaptive state transition model within a particle filter-based framework. In [46], a what-and-where

fusion neural network is used to classify faces in each frame, where a bank of Kalman filters is used to track

the movement of faces in a scene. Finally, an evidence accumulation module accumulates the classifiers

responses over time according to face tracks [47].
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In [48], a door monitoring system is designed where confidence scores are computed by a local appearance-

based FR algorithm. The confidence scores are progressively combined to provide the identity estimate for

an entire sequence. Three different measures are used to weight the contribution of individual frames in

the identity estimation: distance-to-model, distance-to-second-closest, and their combination. In [49], score

driven and quality driven methods are analyzed for spatiotemporal FR. In score driven method, facial regions

are continuously matched against facial models until a matching score is above a predefined threshold. In

quality driven method, facial images are processed until a quality intrinsic to the considered image is above

a predefined threshold. In both of the cases, the matching score over the predefined threshold indicates a

positive identification of the sequence.

In [14], a learn-and-combine strategy is employed for spatiotemporal FR in VS. When the number

of positive ensemble predictions surpasses a higher update threshold, then all target samples from the

trajectory are combined with non-target samples (selected from the cohort and universal models) to update

the corresponding face model. In addition, a memory management strategy based on Kullback-Leibler

divergence is proposed to rank and select the most relevant target and non-target reference samples to be

stored in memory as ensembles evolve.

2.5. Challenges

In still-to-video FR, the limited number of reference stills lead to gallery-face-models that are poor

representations of target individuals as they would appear in a video camera viewpoint. It is difficult to

design robust gallery-face-models that can deal the uncertainties and intra-class variations that may appear

in VS environments. During operations, faces are typically captured in low quality videos under semi- and

uncontrolled conditions which may be very different than the gallery-face-models. Beyond issues with camera

interoperability, these face captures incorporate variations in scale, blur, pose, expression, and lighting [3].

Moreover, fewer face ROIs are typically detected for matching in VS environments using the segmentation

module, which also reduces performance. Figure 2 shows a 2D projection of faces captured by segmentation

(face detection) versus those obtained by tracking an individual in a scene. To observe the variation of

appearances, the facial captures are extracted into an 81-dimension the case with HOG patterns and with

projected in a two dimensional space using Sammon mapping. It is clear from the figure that the face

detection (2(b)) with face plus eye detection (2(a)) detects few facial captures (33 and 7, respectively) out

of 67 frames where the individual appears. Using tracker, 60 out of 67 facial captures are observed in 2(c).

As an indication of diversity, the intra-class variations of facial captures in the original HOG space obtained
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using face detection only, and face and eye detection yield an average standard error of 0.07 and 0.03 with

respect to the mean location, respectively, whereas with tracking, it is 0.12.

To incorporate greater diversity of facial representation, and improve FR with limited reference stills,

adaptive biometric and SSPP techniques may be used. The limitation of adaptive systems is that they may

corrupt the gallery-face-model if updated with incorrectly classified ROI patterns.

Among the SSPP techniques, multiple face representations are complex because they require multiple

face descriptors and patch schemes within a common framework [27]. Though these techniques achieve some

level of robustness against illumination variation or partial occlusion by using different features, they do not

address pose or expression changes during operation. Synthetic face generation and enlarging training set

using auxiliary set may not provide representative samples to enlarge gallery-face-models, as they cannot

predict many unobserved variations of faces in a real-world scene. The derived transformation function (for

the synthetic generation) or the learned discriminant model (by the enlarging training set using auxiliary

data set) may not be suitable to distinguish persons from the single reference ROI pattern.

(a) FD and ED (7 captures) (b) FD (33 captures) (c) FT (60 captures)

Figure 2: Sammon mapping of facial captures obtained using (a) combined face and eye detection, (b) face detection, and (c)
face tracking from video of individual ID 03 in P1E S1 C1 of Chokepoint dataset.

3. Still-to-Video FR Using Adaptive Appearance Model Tracking

A new Adaptive Appearance Model Tracking–based FR (AAMT-FR) system is proposed for still-to-

video FR. In the proposed system, a set of gallery-face-models is designed as usual during enrollment, using

the reference still images of target individuals. During operations, a track-face-model is learned online over

successive frames for each different person appearing in the scene. These models gradually incorporate

intra-class information on the facial appearance from the operational scene. Meanwhile, for each frame,

these track-face-models are matched against the gallery-face-models of every target individuals enrolled to

the system. Matching scores linked to target individual are then accumulated over time and compared with

an individual-specific decision threshold for robust spatio-temporal recognition.
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The proposed system (shown in Figure 3) is comprised of the same general modules as in Figure 1, but

FR is performed using an AAMT. Algorithm 2 presents an algorithmic description of a track-and-classify

system for still-to-video FR using AAMT. The main advantage of AAMT-FR is that a greater diversity

of facial representation may be captured from face in the scene during operations with AAMT, and this

can lead to a higher level of discrimination for spatiotemporal recognition. The rest of this section presents

additional details about the track-face-modeling and spatiotemporal recognition of this system, making

the same simplifying assumption as in Section 2 (regarding the gallery-face-model and template matching

system).

Figure 3: Framework for the proposed AAMT-FR.

3.1. Track face modeling

The face tracking module incorporates four main functions – face representation, prediction filtering,

data association, and adaptive appearance modeling of faces in tracking. The segmentation module captures

face ROIs in each frame It, ROIrt , where r = 0, ..., R. Given a ROIrt captured in a new region of an input

frame It by the segmentation module, the features are extracted into a ROI pattern akt . It allows initiating

a track face model mk
t for a new track. For existing tracks, the ROI pattern is extracted from the candidate
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Algorithm 2: A track-and-classify approach to still-to-video FR using AAMT

Input: Input frames {It : t = 1, ...,∞}. Gallery-face-models {bl : l = 1, ..., L} of target individuals
enlisted in the gallery.

Output: List of likely individuals from WL in the scene
1 for each It with t = 1, ...,∞ do
2 Apply segmentation to detect ROIs corresponding to faces in a frame.
3 // Track Initialization

for each {ROIrt : r = 0, ..., R} do
4 if the ROI is located in a different place than the existing tracks then
5 Increment the number of tracks, K ← K + 1

Initiate a new track-face-model mk
t with the ROI for the newly initiated face track K

6 // Tracking

for each track-face-model mk
t with k = 1, ...,K do

7 Compute the state Xk
t of the face in frame It using tracking

Given a data block Ak, compute a face-track-model mk
t using Singular Value Decomposition

Given a new data block Bk, update the track-face-model mk
t using the newly computed state

information Xk
t by SKL algorithm (seeAlgorithm3)

8 // Classification

for each track-face-model mk
t with k = 1, ...,K do

9 for each template bl with l = 1, ..., L do

10 Compute similarity score, S(k, l) between mk
t and bl using Equation 2

11 // Fusion
for k = 1 to K do

12 for l = 1 to L do

13 Accumulate scores over W consecutive frames by acc St(k, l) =
∑t

i=t−W Si(k, l).

14 if acc St(k, l) ≥ γl then
15 Detect or predict the presence of WL individual l

region in It itself through data association. In Figure 2, akt is a ROI pattern representing the face captured

for track k at a candidate region of frame It.

The adaptive appearance modeling module inside the tracker generates track-face-models mk
t for the

newly initiated tracks, and updates the models for the existing tracks. Once a new face track k is initially

detected in the scene, the ROI pattern for the first n frames are tracked and captured. A data block

Ak = {ak1 , ...,akn} is thereby defined using the tracked face regions with states {Xk
1 , ...,X

k
n}. Then, the

track-face-model of the target face is generated with three components, mk
A = {Uk

A, ā
k
A,Σ

k
A}, where Uk

A is

the eigen vector, ākA is the mean vector, and Σk
A is the covariance matrix computed from the singular value

decomposition (SVD) of the centered data matrix of data block Ak.

When a new data block, Bk = {akn+1, ...,a
k
n+q}, becomes available after tracking for q additional frames,

the updated face model mk
A+B = {UA+B , āA+B ,ΣA+B} is obtained by using the augmented data matrix
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[AB] through the computationally efficient Sequential Karhunen–Loeve (SKL) algorithm [13]. The input

to adaptive appearance modeling module is the ROI pattern akt extracted from the region defined by the

tracking state Xk
t for face k at time t, and the output is the updated face model mk

t . Two key parameters –

the forgetting factor f , and batch size q – determine the plasticity of the track face models. The parameter

f ∈ [0, 1] determines the contribution from older observations to be considered in updating the track-face-

model, where f = 1 indicates no forgetting is to occur at all. The parameter q defines the batch size at

which the face model is updated during tracking. An algorithmic description of the SKL method is given in

Algorithm 3.

Algorithm 3: Update of the track-face-model using Sequential Karhunen–Loeve (SKL) method

Input: Initial track-face-model mk
A = {UA, āA,ΣA} obtained using data block Ak = {ak1 , ...,akn};

new data block obtained after tracking Bk = {akn+1, ...,a
k
n+q}; Batch size (q); forgetting

factor (f).
Output: Updated track-face-model, mk

A+B = {UA+B , āA+B ,ΣA+B}.
1 Compute mean vectors āB = 1/q

∑n+q
i=n+1 ai, āA+B = f.n

f.n+q + q
f.n+q āB

2 Form the matrix B̂ =
[
(an+1 − āB)...(an+q − āB)

√{(n.q)/(n+ q)}(āB − āA)
]

3 Compute B̃ = orth(B̂− UUT B̂) and R =

[
fΣ UT B̂

0 B̃(B̂−UUT B̂)

]

4 Compute the SVD of R : R
SV D→ ŨΣ̃Ṽ

5 Update eigen vector, UA+B =
[
UB̃

]
Ũ and ΣA+B = Σ̃

The SKL algorithm has space and time complexity that is constant within n, the number of tracker ROI

patterns capture so far. Specifically, each update makes use of only the k largest singular values and basis

vectors from the previous model update stage. Along with the storage required for the q new ROI patterns,

each one extracted from a d dimensional facial captures, this reduces the space complexity to O(d(k + q)),

down from O(d(k+ q)2) with the traditional PCA approach, where d is the dimension of the facial captures.

Similarly, the time complexity is also reduced to O(dq2), versus O(d(n + q)2) for recomputing the entire

SVD. More details and complexity analysis of the SKL algorithm are described in [13].

In Prediction filtering, the state of a face in a frame is predicted based on information in the previous

frames, and on some underlying model for state transitions. The objective of prediction filtering is to achieve

improved data association while reducing search space. Given a ROI pattern akt at frame It, the input to

the prediction filter is the previous state Xk
t−1 and the output is a number of predicted states X́

k

t defining

the new locations and sizes of the face at It. A particle filter is used [50] for predicting the new states during
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tracking.

Data association compares the face model mk
t and the tracker ROI pattern akt extracted from a predicted

region (or state) defined by particle filter at frame It. The region that gives maximum matching score is

considered as the new location of the target face k at It. Inputs to the data association module are mk
t and

a tracker ROI pattern akt extracted from the region defined by a predicted state X́
k

t , and the output is the

estimated state Xk
t of the face in It. The state vector Xk

t is used to predict the location of the target face

k in next frame It+1 for the further tracking. Similarity between the face model mk
t and the tracker ROI

pattern akt to find face correspondences in consecutive frames is measured using:

P (at|Xk
t ) = Pdt

(at|Xk
t )Pdw

(at|Xk
t ) (1)

where Pdt
= N(at;μ,UUT + εI) refers to the probability of a ROI pattern generated from a subspace

which is governed by a Gaussian distribution and Pdw = N(at;μ,UΣ−2UT ) refers to the probability of the

projected ROI pattern which is modeled by the distance from the mean [21].

3.2. Spatiotemporal recognition

The fusion module incorporates information from both AAMT and classification for spatiotemporal

recognition. Assume a gallery that contains gallery-face-model {bl : l = 1, ..., L} of the reference stills,

and individual–specific decision thresholds {δl : l = 1, ..., L}. During operations, the similarity between a

face-track-model mk
t = {U, āt,Σ} and a gallery-face-model bl is computed. The input to the classification

step are mk
t and bl, and the output is the similarity score St(k, l).

St(k, l) = exp

{
−
∥∥∥(bl − āt)−UUT (bl − āt)

∥∥∥2
}

(2)

At a time instance t, St(k, l) indicates the likelihood that the facial model mk
t corresponds to the template

for individual l enrolled to the system.

The system’s overall decisions are produced at the trajectory level. The fusion module accumulates the

scores of a target k over the last W frames for each trajectory using:

acc St(k, l) =

t∑
i=t−W

Si(k, l) (3)

If the accumulated score for a target individual surpasses its decision threshold δl, the presence of the
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individual l is detected. The system flags all individuals of interest that are detected in the scene. An

individual–specific decision thresholds δl may be selected using the score distribution obtained by matching

the gallery-face-model bl to ROI patterns of non-target individuals from the UBM at a desired fpr of the

cumulative probability density function. In Figure 4, the score distribution is shown in blue, whereas its

cumulative distribution is shown in red. At fpr = 5%, the decision threshold for this specific individual (ID

03) in the illustration is δ3 ∼= 0.8251.

Figure 4: Example of the cumulative probability distribution function for δ3 (target ID 03) versus ROI patterns of non-target
individuals over all non-target videos (UBM). In this example, individual IDs 18-27 are captured in all the non-target videos.

4. Experimental Methodology

4.1. Video data

To compare the performance of the proposed method, video sequences from the Chokepoint dataset [15]

are used. They are recorded for a VS scenario, where an array of 3 cameras is placed above different portals

(natural choke points in terms of pedestrian traffic) to capture individuals walking through in a natural way.

The sequences are named according to the recording conditions (e.g. P2E S1 C3) where P, S, and C stand

for portal, sequence and camera, respectively. E and L indicate individuals either entering or leaving the

portal.

The dataset contains 54 videos, among which 6 contains a mixture of people (crowded scene) and 48

are with one person at a time. Each one of the videos with one person at a time captures 29 individuals,

where 19 subjects are male and 6 are female. All videos are captured in two portals and 5 sessions, where

the recordings of two portals are one month apart. Videos are captured at 30 fps and an image resolution is

800×600 pixels. In total, the dataset consists of 54 video sequences (27 leaving and 27 entering) and 64,204
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labeled face images each of which are cropped with size 96 × 96. This dataset is challenging for FR as the

videos are captured under uncontrolled conditions with variations in pose accumulation, lighting, scale, and

blur.

4.2. Protocol

The AAMT-FR technique proposed in this paper is compared to the systems for still-to-video FR based

on template matching (TM-FR [8]), adaptive biometrics (TM-FR with self-update [9]), Sparse Variation

Dictionary Learning (SVDL [41]), and Multiple Face Representation (MFR [27]). In TM-FR, input ROI

patterns are extracted from the ROIs detected in a frame and compared with all the gallery-face-models

using some similarity measure. The input ROI patterns are linked to tracking trajectory and accumulate

the similarity scores over the trajectory for spatiotemporal recognition. Only one reference still is used to

design the gallery-face-model for each target individual. In TM-FR with self-update, a FR system similar to

TM-FR is employed, where the gallery-face-models is changed adaptively over time. To update the gallery-

face-models, only those input ROI patterns are selected for which the similarity scores surpass a second

update-threshold for the target individuals. In SVDL, the gallery-face-models are generated from a sparse

variation dictionary learned from single training samples per person, as well as an auxiliary dictionary of

ROIs captures from non-target UBM individuals appearing in the scene. In MFR, multiple representations

of the single sample per person are stored in the gallery as gallery-face-model. Multiple feature extraction

techniques (LBP, LPQ, HOG, and Haar feature) are applied to patches isolated from the gallery-face-

models to generate diverse face-part representations. Finally, an ensemble of template matchers is applied

on multiple face representations for FR.

To measure average system performance, the following experiments are repeated 10 times, and each

time randomly selecting 5 different individuals as targets and 10 different individuals as non-targets for

WL screening. The initial enrollment process involves the random selection of 5 target WL individuals of

interests among the 25 individuals of Chokepoint dataset. As an example, the ROIs captured in 5 mugshots

of 5 individuals are shown in Figure 5 (left column). During operation, 15 individuals are considered for

recognition in video sequences, which includes the 5 target individuals and 10 non-target individuals selected

at randon to appear in the scene. Selected ROI pattern captured from videos for the target WL individuals

are also shown in Figures 5 (right column). Since the experiments are conducted on 25 individuals, and we

consider 48 video sequences in the Chokepoint dataset, the performance of the FR systems are measured on

48× 25 = 1200 facial trajectories, with a total number of about 58,000 ROIs. The remaining 10 individuals
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(25− 15) are used as universal background model (UBM) for individual-specific threshold selection and to

compute PCA projection matrix.

Reference
still ROIs

Examples of their ROIs from videos

03

04

07

09

12

Figure 5: Illustration of reference ROI patterns extracted from high quality mug shots represented in the gallery and a selection
of ROI patterns from videos of the target individuals in the scene for replication one.

In experiments, faces are detected using Viola and Jones [16] algorithm. The number of ROIs captured

for the experiments from the entering and leaving sequences with different camera views are enlisted in

Table 1. A particle filter based tracker [21] is used to follow the motion of faces in the scene, and form

trajectories. Trajectories are initialized with the bounding box surrounding a new face detected in the

scene. Different parameters for the tracker are set as follows. For predicting the new location of the target

in a frame, P = 600 particles are used with the particle filter. For affine transformation, the parameters

σx, σy, σθ, σs, σα, and σϕ are set to 9, 9, 0.05, 0.05, 0.005, and 0.001, respectively. These parameters

represent the standard deviations for x-translation, y-translation, rotation, scale, aspect-ratio, and skew

direction changes, respectively, that are allowed for transformation functions with the tracking system. The

forgetting factor f and batch size g for the SKL method to update track-face-model online are set to 0.99

and 5.00, respectively. In SVDL, three regularization parameters, λ1, λ2, λ3 are set 0:001, 0:01 and 0:0001,

respectively, and the number of dictionary atoms as 400 in the initialization. In MFR, patch based method

is used for feature extraction, where 16 patches with size 12x12 has been extracted from each of the facial
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captures in the experiments.

Table 1: Number of ROIs captured per camera for each individual in Chokepoint videos.

ID
Entering Leaving

Total
Camera 1 Camera 2 Camera 3 Camera 1 Camera 2 Camera 3

01 425 434 291 481 499 334 2464
03 421 448 313 456 561 360 2559
04 314 337 215 362 359 199 1786
05 359 411 281 466 483 307 2307
06 394 459 303 523 525 312 2516
07 488 487 324 448 501 337 2585
09 330 358 269 451 454 311 2173
10 366 394 289 454 478 289 2270
11 465 484 314 521 510 378 2672
12 280 339 258 468 447 269 2061
13 490 534 371 634 648 431 3108
14 406 431 280 484 488 324 2413
15 383 417 296 459 476 270 2301
16 269 320 222 400 396 253 1860
17 369 380 261 447 477 322 2256
18 354 379 276 513 508 341 2371
19 320 418 283 431 517 340 2309
20 443 441 312 491 497 329 2513
21 404 391 265 469 466 303 2298
22 368 371 256 425 441 276 2137
23 359 343 226 400 408 250 1986
24 447 485 326 554 582 391 2785
25 484 486 355 559 562 370 2816
26 307 320 234 359 371 243 1834
27 351 354 252 467 436 308 2168

Total 9596 10221 7072 11722 12090 7846 58,548

The facial ROIs are scaled into a common size of 48 × 48 pixels. For recognition, 81-dimensional HOG

(Histogram of Oriented Gradient) features are extracted from each ROI. Then HOG features are extracted

by using 9 rectangular cells and 9 bin histogram per cell. The nine histograms with nine bins are then

concatenated to make a 81-dimensional feature vectors. The histogram bins are calculated over rectangular

cells by the computation of unsigned gradient. The cells overlap half of their area, meaning that each cell

contributes more than once to the final feature vectors. Finally, the 81 features are reduced into 32 using

PCA projection.

At a given time, one videos in the Chokepoint dataset are recorded using 3 cameras with different viewing

angles, one of the cameras is likely to capture a face near-frontal. Since faces captured in reference stills have

a frontal pose and higher resolution, ROI captured from video with a near frontal pose and higher quality
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are expected to generate higher similarity scores. As seen in Table 1, Camera 2 is more likely to capture

a face with near-frontal view of the 48 Chokepoint sequences used for experiments, only one individual

is presented at a time. Therefore, by selecting the maximum score among the responses obtained from 3

camera views, it can be expected that the most similar frontal pose will be selected to populate a trajectory.

All the transaction and trajectory level results are always considered with or without score fusion across

cameras.

An architecture for the AAMT-FR technique with camera-fusion is shown in Figure 6. Given T = 15

individuals walking through a portal one at a time, surveillance cameras will provide different view points.

For a single camera view Cn (here, n = 1, 2, and 3), 15 track-face-models are initiated and generate T

trajectories by tracking their faces in the scene. Classification compares each track-face-model against the

L = 5 templates bl in the gallery. For each frame, every track-face-model generates a matching score for

the L templates in the gallery. The scores for different camera views are combined using the maximum

score-level fusion rule [51]. Finally, the maximum scores are accumulated over the trajectory for robust

spatio-temporal recognition. If an accumulated score in a fixed window of W = 30 frames surpasses the

individual-specific decision threshold, the presence of the target individual is detected in the scene.

Figure 6: A block diagram of AAMT-FR method using score-level fusion over the 3 Chokepoint cameras.
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4.3. Performance measures

Performance of a still-to-video FR system is measured at transaction- and trajectory-levels, each one

evaluated with only the center camera or with score-level fusion over the 3 cameras. Transaction-level

analysis show the performance of FR systems for face matching on each ROI. Table 2 gives an overview of

the experiments presented in Section 5.

Table 2: List of Experiments

Experiments Description Performance Measures

Transaction level
analysis (Section 5.1)

Face matching performance
without camera fusion

ROC, precision, recall,
AUC, AUPR

Face matching performance
with camera fusion

Trajectory level
analysis (Section 5.2)

Overall performance based on
trajectories without camera fusion ROC, AUC
Overall performance based on
trajectories with camera fusion

Performance analysis at
different priors (Section 5.3)

Overall performance at different priors
of target and non-target

AUPR

Time complexity analysis
(Section 5.4)

Time needed to process one frame sec/frame

Detailed analysis
(Section 5.5)

Best and worst case scenarios
Accumulated scores and scatter

plots of the facial captures
Sensitivity of different

parameters
AUC varying forgetting
factors and batch-sizes

The Receiver Operating Characteristic (ROC) space, where the Area Under Curve (AUC) provides a

global scalar measure. ROC is a parametric curve in which the true positive rate tpr is plotted against

fpr, where the tpr is the proportion of targets correctly classified over the total number of target ROIs and

the fpr is the proportion of non-target ROIs incorrectly classified (as positives) over the total number of

non-target ROIs. In practice, an empirical ROC curve is obtained by connecting the observed (tpr, fpr)

pairs for a classifier at each threshold. The AUC assesses ranking in terms of class separation - the fraction

of positive-negative pairs that are ranked correctly. For instance, with an AUC = 1, all positives are ranked

higher than negatives indicating a perfect discrimination between classes. A random classifier has an AUC

= 0.5, and both classes are ranked at random. The partial AUC, pAUC(5%), is measured by taking the

AUC at 0 < fpr ≤ 5% from the ROC curve.

Class priors for target and non-target individuals may vary over time in real scenario. Traditional ROC

analysis cannot distinguish between two classifiers for specific class miss-classification costs. ROC curves

and the AUC allow for a performance evaluation that is independent of costs and priors by integrating
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performance over a range of decision thresholds. However, it is important to observe performance as the

proportion of the correctly predicted positive ROIs out of the total number of ROIs predicted to belong to a

given individual. Otherwise, when processing highly imbalanced data, and the minority positive samples are

of interest, a FR system may outperform others by predicting a very large number of samples as minority,

resulting in an increased tpr at the expense of an increased fpr. Given the imbalance between target and

non-target captures, performance is assessed in the Precision-Recall (PR) space [52], where the area under

the PR curve (AUPR) provides another global scalar measure. The PR space focuses on inter-class measures.

Precision (P ) = tp/(tp + fp) is the proportion of correct positive predictions (TP) against the total positive

predictions (tp+fp) and Recall (R) = tp/(tp + fn) which is same as the tpr. At a particular operating point,

the scalar F1 produces a single performance indicator, F1 = 2P.R/(P +R).

(a) Score (b) ROC space

Figure 7: Illustration of trajectory-level analysis used to evaluate the overall performance of a system for still-to-video FR over
one video [14].

With trajectory-level analysis, the performance of an entire still-to-video FR system is analyzed after

accumulating its output scores (obtained from score-level fusion for 3 camera views) over a trajectory.

Information from FT is used to accumulate the scores for facial regions corresponding to a same person in

a scene over some window (e.g., W = 30 frames). Figure in 7(a) illustrates the accumulation of matching

score according to the frame count over time for a single trajectory of a video. Once individuals appear

before a camera in video stream, and the related trajectories are processed, the performance of a FR system

based on accumulated scores may be assessed over the range of decision threshold, and represented in the

ROC space (see Figure 7(b)).

The quality of the facial ROI captures in videos are also assessed with respect to the reference ROIs of

the still gallery for describing best and worst case scenarios. For quality assessment, the luminance, contrast
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and structure measures are considered within a global quality measure called Structured Similarity Index

(SSIM) [53], where:

• Luminance: l(x, y) =
2μxμy+C1

μx+μy+C1
, where x and y are the features extracted from a facial capture and

a reference ROI pattern, respectively, and μx and μy are their means. C1 is a constant included to

avoid instability when μx + μy + C1 is very close to zero.

• Contrast: c(x,y) =
2σxσy+C2

σx+σy+C2
, where σx and σy are the standard deviations of x and y, respectively.

C2 is a constant.

• Structure: s(x,y) =
σxy+C3

σxσy+C3
, where σxy = 1

N−1

∑N
i=1 (xi − μx)(yi − μy) and C3 is a constant.

Luminance, contrast, and structure are combined into a global quality measure as follows:

SSIM(x,y) = [l(x,y)αc(x,y)βs(x,y)γ ] =
(2μxμy + C1)(2σxy + C2)

(μx + μy + C1)(σx + σy + C2)
(4)

where α = β = γ = 1 and C3 = C2/2.

5. Results and Discussion

5.1. Transaction-level analysis:

Figure 8 shows an example of ROC and PR curves obtained when matching ROI patterns extracted

from input videos (leaving sequences captured in Camera 2) with the templates of target IDs 03, 04, 07,

09, and 12 using TM-FR, TM-FR with self-update, and AAMT-FR systems. Figures 8(a) and (b) show

the ROC and inverted-PR curves obtained using the TM-FR systems on all leaving sequences captured in

Camera 2. The dotted line in the figures indicates the operating point at fpr = 5% related to target ID

09. Results show that the TM-FR system performs poorly in most of the sequences, due to the limited

representativeness of templates, and due to the significant discrepancy between probe and gallery data. The

gallery represents templates extracted from high quality frontal shots, whereas the faces captured are of

lower quality and vary with several nuisance factors. Along with camera interoperability issues, this results

in poor overall performance.

Figures 8(c)-(d) show the ROC and inverted PR curves for the TM-FR system with self-update for all

the leaving sequences captured in Camera 2. Self-update allows for improved performance for IDs 09 and

12, yet degraded performance for ID 04. For IDs 03 and 07, the system shows comparable performance

to the TM-FR system. Self-update improves performance if gallery-face-models are correctly updated with
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(a) Leaving, Camera 2
sequences (TM-FR)

(b) Leaving, Camera 2
sequences (TM-FR)

(c) Leaving, Camera 2
sequences (TM-FR with

self-update)

(d) Leaving, Camera 2
sequences (TM-FR with

self-update)

(e) Leaving, Camera 2
sequences (AAMT-FR)

(f) Leaving, Camera 2
sequences (AAMT-FR)

Figure 8: Example of ROC curves (right side) and inverted-PR curves (left side) for TM-FR, TM-FR with self-update, and
AAMT-FR systems using all the leaving video sequences of Chokepoint for Camera 2.

25



ROIs from the same target individual during operation. However, if ROI patterns are incorrectly selected

for update, performance is degraded.

Figures 8(e)-(f) show the ROC and inverted PR curves obtained using AAMT-FR system for all the

leaving sequences captured in camera 2. This system learns faces during operation as in track-face-models.

These models represent intra-class variations and improve face matching scores even if ROIs of a target

individual differ somewhat. However, if the appearance of target faces vary abruptly within a trajectory,

track-face-model may accept non-targets as targets and produce higher similarity scores even for the non-

target individuals. Moreover, if the variation of a face appearance in the facial captures is very different

than the templates in the gallery, track-face-model may produce poor classification scores for the target

individual in the scene. Figures 8(e)-(f) show that the IDs 03 and 07 perform comparatively worse compare

to the IDs 04, 09, and 12. However, AAMT-FR system performs better compare to the other methods.

Table 3 shows average AUC, pAUC, and AUPR, and Table 4 shows the average Precision (P), Recall

(R), and F1 measures for a defined fpr = 5% for the TM-FR, TM-FR with self-update, and AAMT-FR

systems considering all the entering and leaving sequences captured with Camera 2. ROC and inverted-PR

curves for all the entering and leaving sequences (captured in all 3 Cameras) using the 3 FR systems are

shown in Appendix A.1. Detailed results include all 3 camera views are shown in Appendix A.2, Tables

A.7 and A.8. It is observed from Tables 3 and 4 that the AAMT-FR system significantly outperforms the

others.

5.2. Trajectory-level analysis

Figure 9 shows the transaction and trajectory level performance using only for Camera 2. For reference,

Figures 9(a), (c), and (e) show the ROC curves for the TM-FR, TM-FR with self-update, and AAMT-FR

systems, respectively, at the transaction level. Without score level fusion based on three camera views, only

the frontal or near frontal views from a single camera provide ROIs for face matching. Trajectory level

performance is shown in Figures 9(b), (d), and (f) only for Camera 2. In all cases, accumulating scores

over trajectories provides a significant higher level of performance through still-to-video recognition. The

ROC curves obtained using all the Chokepoint videos processed with the TM-FR systems at transaction-

level after score-level fusion of 3 cameras are shown in Figures 10(a), (c), and (e), respectively. From these

curves, it is apparent that overall the AAMT-FR also outperforms the others at transaction level after

camera score fusion, where the fused scores are accumulated over time. Figures 10(b), (d), and (e) show

the corresponding trajectory-level ROC curves (1 sec., or 30 frames), along each trajectory. At trajectory

level, output predictions are result of scores accumulated over time, and provide a higher level of accuracy
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Table 3: Average AUC, pAUC(5%) and AUPR performance for TM-FR, TM-FR with self-update, and AAMT-FR systems at
transaction level analysis on all the videos.

IDs
Entering/
Leaving

TM-FR TM-FR with self-update AAMT-FR
AUC pAUC AUPR AUC pAUC AUPR AUC pAUC AUPR

03
Entering

0.739
±0.06

0.160
±0.05

0.237
±0.07

0.739
±0.06

0.160
±0.05

0.237
±0.07

0.823
±0.04

0.123
±0.06

0.244
±0.07

Leaving
0.818
±0.02

0.118
±0.02

0.233
±0.03

0.818
±0.02

0.118
±0.02

0.233
±0.03

0.805
±0.03

0.168
±0.01

0.256
±0.02

04
Entering

0.771
±0.02

0.339
±0.01

0.373
±0.02

0.771
±0.02

0.339
±0.01

0.373
±0.03

0.936
±0.01

0.484
±0.07

0.521
±0.08

Leaving
0.824
±0.02

0.324
±0.07

0.347
±0.07

0.815
±0.02

0.226
±0.06

0.247
±0.06

0.972
±0.01

0.642
±0.04

0.685
±0.05

07
Entering

0.753
±0.02

0.131
±0.01

0.215
±0.02

0.753
±0.02

0.131
±0.01

0.215
±0.02

0.812
±0.03

0.234
±0.06

0.347
±0.07

Leaving
0.799
±0.02

0.174
±0.05

0.238
±0.03

0.799
±0.02

0.174
±0.05

0.238
±0.05

0.912
±0.01

0.403
±0.04

0.539
±0.03

09
Entering

0.673
±0.02

0.119
±0.02

0.134
±0.02

0.673
±0.04

0.119
±0.02

0.134
±0.02

0.933
±0.02

0.374
±0.10

0.445
±0.08

Leaving
0.833
±0.15

0.381
±0.09

0.473
±0.12

0.884
±0.16

0.463
±0.12

0.544
±0.14

0.976
±0.19

0.728
±0.15

0.804
±0.14

12
Entering

0.726
±0.03

0.236
±0.06

0.286
±0.07

0.813
±0.07

0.304
±0.08

0.376
±0.09

0.954
±0.01

0.532
±0.07

0.619
±0.06

Leaving
0.805
±0.01

0.276
±0.05

0.360
±0.05

0.878
±0.04

0.387
±0.09

0.473
±0.10

0.968
±0.01

0.721
±0.05

0.780
±0.04

Average
0.774
±0.04

0.226
±0.04

0.290
±0.05

0.794
±0.05

0.242
±0.05

0.307
±0.05

0.908
±0.04

0.441
±0.07

0.524
±0.07

and robustness through spatiotemporal recognition. The TM-FR, TM-FR with self-update, and AAMT-

FR systems achieved improved performance for all the WL individuals compared to transaction-level ROC

curves. The overall performance of the AAMT-FR system is the highest.

Table 5 presents a comparison of the overall transaction- and trajectory-level performance of the TM-FR,

TM-FR with self-update, MFR, SVDL, and AAMT-FR systems. Both levels of analysis are shown with-

and without camera fusion and considering all the sequences of the Chokepoint. To compare the global

performance of the proposed system, the experiments are repeated 10 times, each time randomly selecting

five targets (to form the WL) and 10 non-targets. It is observed in Table 5 that the proposed AAMT-

FR outperforms other methods in all the cases. In MFR, the multiple representation of faces may fail to

incorporate information of face variations that occur due to change in capture conditions (e.g., pose, scale,

resolution, illumination, blur and expression) and camera inter-operability. Moreover, fusion of multiple

representation is also challenging. In SVDL, the variation of face appearance in a generic set learned within

gallery-face-model may be quite different than that of the single ROI set enlisted in the gallery, which may
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Table 4: Average P, R, and F1 performance for TM-FR, TM-FR with self-update, and AAMT-FR systems on all videos.

IDs
Entering/
Leaving

TM-FR TM-FR with self-update AAMT-FR
P R F1 P R F1 P R F1

03
Entering

0.277
±0.06

0.256
±0.08

0.265
±0.07

0.277
±0.05

0.256
±0.07

0.265
±0.06

0.248
±0.09

0.235
±0.11

0.240
±0.10

Leaving
0.249
±0.02

0.225
±0.03

0.236
±0.03

0.249
±0.02

0.224
±0.03

0.236
±0.03

0.292
±0.04

0.277
±0.04

0.285
±0.04

04
Entering

0.331
±0.01

0.441
±0.01

0.368
±0.01

0.331
±0.01

0.441
±0.01

0.378
±0.01

0.430
±0.15

0.675
±0.04

0.525
±0.02

Leaving
0.310
±0.05

0.458
±0.08

0.370
±0.06

0.259
±0.04

0.359
±0.08

0.301
±0.06

0.459
±0.04

0.854
±0.04

0.597
±0.02

07
Entering

0.257
±0.02

0.200
±0.01

0.225
±0.01

0.257
±0.02

0.200
±0.01

0.225
±0.01

0.363
±0.03

0.335
±0.05

0.347
±0.04

Leaving
0.275
±0.05

0.276
±0.08

0.273
±0.07

0.275
±0.05

0.276
±0.08

0.273
±0.07

0.463
±0.02

0.591
±0.03

0.519
±0.03

09
Entering

0.201
±0.03

0.205
±0.04

0.203
±0.03

0.201
±0.03

0.205
±0.04

0.203
±0.03

0.409
±0.04

0.570
±0.12

0.474
±0.07

Leaving
0.400
±0.08

0.491
±0.11

0.440
±0.09

0.435
±0.09

0.576
±0.14

0.494
±0.10

0.456
±0.10

0.882
±0.17

0.674
±0.12

12
Entering

0.249
±0.04

0.300
±0.07

0.271
±0.06

0.301
±0.06

0.404
±0.11

0.342
±0.08

0.440
±0.02

0.694
±0.07

0.537
±0.03

Leaving
0.339
±0.03

0.395
±0.06

0.364
±0.05

0.398
±0.06

0.523
±0.11

0.451
±0.08

0.533
±0.02

0.872
±0.05

0.662
±0.03

Average
0.289
±0.03

0.325
±0.06

0.302
±0.05

0.398
±0.05

0.346
±0.07

0.317
±0.05

0.418
±0.04

0.599
±0.07

0.486
±0.05

not be suitable to distinguish the target individuals of the gallery. AAMT-FR incorporates greater diversity

of facial representation in the track-face-model that are captured during operation, and this leads to better

discrimination of the target individuals for spatiotemporal recognition.

5.3. Performance analysis at different priors

In Figure 11, performance of FR systems are observed in terms of AUPR by varying the proportion of

matched ROIs of the target and non-target individuals in the operational data. This analysis uses the follow-

ing levels of class imbalance of targets and non-targets, Λ = {λ0, λ1, ..., λ10} = {1 : 1, 1 : 5000..., 1 : 50000}.
To measure system performance, the experiment is repeated 10 times, each time a different individual is

randomly selected as target, and along with a growing number of different individuals as non-targets in the

operational data. AUPR performance for 10 target individuals are calculated at different priors. Finally,

the system performance at different priors is estimated by taking average of the AUPRs over the 10 different

target individuals.

The performance of the AAMT-FR system is compared with the TM-FR, TM-FR with self update, MFR,
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(a) ROCs at transaction
level (TM-FR)

(b) ROCs at trajectory
level (TM-FR)

(c) ROCs at transaction
level (TM-FR with

self-update)

(d) ROCs at trajectory
level (TM-FR with

self-update)

(e) ROCs at transaction
level (AAMT-FR)

(f) ROCs at trajectory
level (AAMT-FR)

Figure 9: ROC curves for TM-FR, TM-FR with self-update, and AAMT-FR systems at transaction and trajectory levels for
all videos Captured by Camera 2.
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(a) ROCs at transaction
level (TM-FR)

(b) ROCs at trajectory
level (TM-FR)

(c) ROCs at transaction level
(TM-FR with self-update)

(d) ROCs at trajectory level
(TM-FR with self-update)

(e) ROCs at transaction level
(AAMT-FR)

(f) ROCs at trajectory level
(AAMT-FR)

Figure 10: ROC curves for TM-FR, TM-FR with self-update, and AAMT-FR systems at transaction and trajectory levels with
camera fusion of 3 Chokepoint Cameras.
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Table 5: Average pAUC(5%) and AUPR for TM-FR, TM-FR with self-update, MFR, SVDL, and AAMT-FR systems on all
Chokepoint videos over 10 replications.

Systems
With Camera 2 With Camera Fusion

Transaction Trajectory Transaction Trajectory
pAUC AUPR pAUC AUPR pAUC AUPR pAUC AUPR

TM-FR
0.243
±0.03

0.353
±0.02

0.312
±0.05

0.369
±0.03

0.249
±0.02

0.457
±0.04

0.318
±0.02

0.423
±0.03

TM-FR with
self-update

0.291
±0.02

0.389
±0.01

0.373
±0.04

0.478
±0.03

0.347
±0.03

0.452
±0.05

0.391
±0.02

0.478
±0.02

MFR
0.397
±0.05

0.414
±0.01

0.413
±0.03

0.485
±0.04

0.417
±0.03

0.512
±0.05

0.472
±0.02

0.532
±0.02

SVDL
0.423
±0.02

0.432
±0.01

0.492
±0.05

0.516
±0.03

0.439
±0.03

0.533
±0.05

0.583
±0.02

0.631
±0.02

AAMT-FR
0.452
±0.04

0.553
±0.03

0.512
±0.03

0.596
±0.02

0.494
±0.02

0.588
±0.04

0.649
±0.07

0.793
±0.03

and SVDL systems considering all the entering and leaving sequences captured with Camera 2 (frontal or

near frontal view). Average AUPRs for the systems at different priors are plotted in Figure 11. The figure

shows that the performance of all the systems are slightly declined as the priors of non-target individuals

increase compared to the target individuals in the operational data. Results indicate that the AUPR

performance of all systems tends to decrease gradually as imbalance grows. Performance for TM-FR with

self-update degrades sharply because of incorrect updates of the gallery-face-model. However, the proposed

AAMT-FR system still outperforms others because the face-tracking-model incorporates diverse information

of the facial captures through tracking.

5.4. Time complexity analysis

The computation effort required by the AAMT-FR is mainly in processing steps for face model update

during tracking. For face model update, the AAMT-FR uses the SKL algorithm [13] whose computational

complexity is O(dm2), where d and m refer to the dimensionality of the input feature vectors (HOG of the

facial captures) and the number of new facial captures considered for face model update, respectively. For

tracking, particle filter has been used, whose computational complexity is O(N), where N is the number of

particles re-sampled for a time instance by the filter [54].

In SVDL, the complexity of commonly used l1 − regularized sparse coding is O(m+ d)ε, where m is the

number of dictionary atoms, d is the dimensionality of the features, and ε is an error constant. In TM-FR with

self update, the main computation is required for gallery-face-model update, where the eigenspace is updated

by re-computing the principal components matrix with the increased training set. This operation requires
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Figure 11: Performance of the FR systems at different priors in the operational data

O(d3 + d2m) computations, where d and m refer to the dimensionality and the number of feature vectors

used, respectively [55]. The computational complexity for TM-FR is O(d), where d is the dimensionality of

feature vectors. It does not update face model and the computational complexity that it requires is mainly

for the template matching. In MFR, patch based method is used for feature extraction, where the selection

of patch size is important, because the amount of information that can be provided by a patch effects the

performance of FR system. However, bigger patches provide much information about the region but increase

the complexity of processing. In the experiment, for each facial capture, 16 patches with size 12x12 has

been used.

The computation time, and pAUC(5%) and AUPR performance for different FR systems are shown in

Table 6. At the trajectory level, the performance for each system has been improved over the transaction

level because of score accumulation. However, a tracker must be incorporated with the FR system for

accumulating scores from the same individual. Thus, at trajectory level analysis, the total computation

times for the FR systems include the times required for the tracking and the recognition. Result indicate

that the AAMT-FR provides its highest level of performance for a relatively low time complexity.
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Table 6: Average pAUC(5%), AUPR, and computation time (sec/frame) for TM-FR, TM-FR with self-update, AAMT-FR,
SVDL, and MFR systems.

Systems
Time Complexity

(sec/frame)
Accuracy

pAUC AUPR
TM-FR [8] 0.191± 0.05 0.312± 0.05 0.369± 0.03
TM-FR with self-update [9] 0.292± 0.07 0.373± 0.04 0.478± 0.03
MFR [27] 0.250± 0.08 0.413± 0.03 0.485± 0.04
SVDL [41] 0.237± 0.05 0.492± 0.05 0.516± 0.03
AAMT-FR 0.217± 0.06 0.512± 0.03 0.596± 0.02

5.5. Detailed analysis

5.5.1. Best and worst cases performance

Figures 12(a)-(c) show the matching scores over time obtained using TM-FR, TM-FR with self-update,

and AAMT-FR systems, respectively, where the template for ID 12 is compared with faces captured in

the P1E S1 C1 video. This is a good case for the AAMT-FR system, since it provides discrimination

scores between ROI of targets and non-target individuals in this scene. This leads to a significantly higher

level of performance than the other systems because it allows incorporating diverse information on facial-

appearance changes into the track-face-models during operation. Although the TM-FR with self-update

system allow upgrading gallery-face-models based on operational data, the use of conservative threshold to

avoid incorporating non-target information prevents updating properly, even when target facial captures

become available in the scene. In contrast, the AAMT-FR system exploits kinematic models within the

tracker to support online learning of tracker face models. The scores over trajectory for the models for

TM-FR, TM-FR with self-update, and AAM-FR systems for all 5 target WL individuals in the scene are

presented in Appendix B, Figures B.23, B.24, and B.25, respectively.

A worse case scenario for AAMT-FR is shown in Figure 13, where the AAMT-FR, TM-FR, and TM-FR

with self-update systems compare template of ID 04 with the faces captures in the video P1E S1 C1 video.

Figure 13(a) shows that the AAMT-FR method produces high classification scores for facials captures linked

to ID 04 (target individual) and ID 05 (another) in the scene. In such situation, lower range is allowed for

the selection of decision threshold which may lead to false detection. However, the TM-FR and TM-FR

with self-update provide better discriminant scores in this case.

In Figure 13, the ROIs for individuals with ID 04 and ID 12 are plotted in the 81 feature HOG space of

ROI patterns and then projected in a 2D space using Sammon mapping. Since both TM-FR and TM-FR

with self-update systems use ROIs captured through face detection, fewer high quality captures are available
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(a) AAMT-FR

(b) TM-FR

(c) TM-FR with self-update

Figure 12: Accumulated scores when inputs are matched against reference for ID 0004 in the gallery.

w.r.t. to the AAMT-FR. Thus, TM-FR and even TM-FR with self-update process facial information with

less diversity of appearance than with AAMT-FR.

Since the AAMT-FR uses facial captures obtained from a tracker, it can incorporate more diversity

information on facial appearances during operations. With AAMT-FR, the faces of a person in the scene

are continually tracked and used for on-line learning of track-face-model without any interruption until the

track is dropped (due to lower track confidence). However, if the appearance of a face changes abruptly, the

track-face-model may become corrupted with tracker ROI patterns that are significantly different than the

corresponding template, and may also resulted in degraded FR performance.

Figures 14(a) and (b) show the scatter plots of the facial captures for corresponding ID 12 used in

TM-FR and AAMT-FR methods, respectively. It is observed from the figures that the TM-FR used fewer

facial captures from segmentation than from tracker. In videos, the diversity of facial appearance (from

segmentation) in video is moderate and complies with the template stored for WL individual ID 12. The
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(a) AAMT-FR

(b) TM-FR

(c) TM-FR with self-update

Figure 13: Accumulated scores when inputs are matched against reference for ID 03 in the galley.

both systems perform well for ID 12 in this video. Figures 14(c) and (d) show the plot of the facial captures

for ID 04 used in TM-FR and AAMT-FR systems, respectively. The diversity of facial appearance for ID 04

in video is high with respect to the corresponding template in the galley. The abrupt changes in appearance

do not correspond to its template and results in a low level of performance for both systems.

Plots of SSIM image quality along with its components (luminance, contrast, and structure) are shown in

Figures 15(a)-(c), respectively, for the facial captures in video of individual ID 03 (with respect to template

ID 03) and ID 04 (with respect to template 04).

The AAMT-FR appears to perform better when for most of the facial captures of an individual has

relatively high SSIM quality with respect to the template from the same individual. Figure 15(a) shows the

relatively high SSIM quality of the facial captures of ID 04 with respect to its template which corresponds

to higher performance in Figure 12(a), Tables 3 (row 5) and 4 (row 5).

If the quality of few facial captures with respect to the template from the same individual is high in a
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(a) Captures of ID 12 used with TM-FR (good case) (b) Captures of ID 12 used in AAMT-FR (good case)

(c) Captures of ID 04 used in TM-FR (worse case) (d) Captures of ID 04 used in AAMT-FR (worse case)

Figure 14: Example of facial captures used in TM-FR and AAMT-FR systems in a good and a worse case scenario.

video, TM-FR may perform better than the AAMT-FR. In such situation, the TM-FR system with self-

update may degrade the performance if the face models incorrectly updated. Figure 15(b) shows that the

quality for the facial captures from ID 03 are lower with respect to the template of ID 03, mostly due to the

SSIM structure component and poor discrimination for ID 03 leads to lower AUC and AUPR performance

for AAMT-FR (see Table 4 and 5). However, in case of TM-FR and TM-FR with self-update method, they

achieved comparable performance.

Figure 14 suggests that limitation of AAMT-FR is that track-face-models not generated with high quality

facial captures may adapt to operational information which is not related to target template. In such

situation, AAMT-FR may not produce better discrimination than TM-FR. In case of TM-FR, it does not

adapt the face models; thus, it is not affected by knowledge corruption from operational captures as with
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the AAMT-FR system.

(a) Captures of ID 04 with respect to template ID 04 (good case)

(b) Captures of ID 03 with respect to template ID 03 (worse case)

Figure 15: Quality of facial captures used in AAMT-FR and TM-FR systems.

5.5.2. Sensitivity analysis

The impact of changing batch size m and forgetting factors f may have a considerable impact on the FR

performance using the AAMT-FR. Figure 16(a) shows the AUC and pAUC(5%) produced by AAMT-FR

system while varying m. In this case m is changed from 1 to 10 while keeping the f = 0.9. This figure shows

that if the batch size is increased, the performance declines as track-face-models are updated after every

m frames. Thus, m = 1 gives best performance for the AAMT-FR system, although this may increase the

processing time.

Figure 16(b) shows the performance of the AAMT-FR while varying f between 0 and 1 while fixing

m = 1. Here, f = 0 indicates forget everything whereas with the higher value of f, it allows to remember

more past observations. AAMT-FR performance tends to increase with the value of f.

6. Conclusion

This paper presents a system, Adaptive Appearance Model Tracker–based Face Recognition (AAMT-

FR), for still-to-video face recognition that is specialized for watch-list screening applications, to address

problems with SSPP (single sample per person). Inside the system, an adaptive appearance model tracker

(AAMT) is used that gradually learns a track-face-model per individual with the facial captures appearing

in the scene. The track-face-models are gradually matched over time against the reference still images
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(a) Batch size (b) Forgetting factor

Figure 16: The AUCs and pAUCs (5%) for different batch sizes and forgetting factors.

from the individuals of interests, and the matching scores are accumulated over several frames and multiple

cameras for spatiotemporal recognition. Performance of the proposed system has been validated with a

generic still-to-video FR systems, where each gallery-face-model corresponds to a template (ROI pattern).

However, each gallery-face-model can also be defined by several templates or a statistical model. In all cases,

AAMT-FR system will provide the same over state-of-the-art systems for still-to-video FR.

There are several advantages of the face-track-model for still to video FR. It can learn the intra-class

variability of the facial appearance online while tracking the face in the scene. Since the face-track-model

relies on facial captures obtained from the tracker for face modeling, and updates the model incrementally, it

performs reasonably well in FR even if a limited number of ROI patterns stored in the WL gallery. Moreover,

face modeling with the tracking faces helps to incorporate information on face appearance changes under

different real-world capture conditions, which is not possible in synthetic ROI pattern generation or enlarging

the training set using auxiliary data. Because of incremental update, the robustness of the face model in

matching for different viewing condition is gradually improved over time.

Any separate preprocessing steps to select key frames has not been applied in the proposed system. Key-

frame selection techniques have their limitations [56], such as neglecting of essential contents and limited

maintenance of dynamic contents in the video. The intuition for learning track-face-model in the proposed

system is to incorporate more representative intra-class variations of the facial appearance in order to improve

face recognition accuracy. Selecting key frames may significantly reduce the number facial captures as well as

diversity information in face model. This may negatively affect FR performance. Since the track-face-model

is updated within a tracker in the proposed system, it is more likely to update the model with captures from
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the same person in a scene. However, some incorrect update may occur due for example to occlusion, which

typically leads to low tracking confidence, and eventually it drops the track considering that the face has

disappeared from the scene. When a track is dropped for an individual, the corresponding track-face-model

is also eliminated from the system and is no longer used for FR. Thus, a track-face-model with incorrect

update will have limited impact on FR performance. If the face appears in the scene again, the segmentation

module detects the face and initiate a new track-face-model for that individual, and trajectory.

The limitation of track-face-model is that it may be incorrectly updated during online learning using

tracking, which may increase false positives in FR. To solve this issue, research could be conducted to enforce

constrained on the overall appearance of the face model to determine the acceptable level of plasticity of the

track-face-model. AAMT based methods are still rather complex. These methods may be problematic for

FR as their computational complexity grows with the number of facial tracks, size of faces, camera resolution

and frame rate, and the number of cameras used by the surveillance system. Further research measures to

reduce the complexity of these methods are also important.
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Additional Results (Supplementary Material)

Appendix A. Transaction-Level Performance

Appendix A.1. ROC and inverted PR curves

(a) Camera 1 (ROC curves) (b) Camera 1 (inverted PR curves)

(c) Camera 2 (ROC curves) (d) Camera 2 (inverted PR curves)

(e) Camera 3 (ROC curves) (f) Camera 3 (inverted PR curves)

Figure A.17: Illustration of ROC (left side) and inverted PR (right side) curves obtained from the transaction-level analysis
on three cameras with entering sequences of Chokepoint using the TM-FR method. (The dotted lines in the curves correspond
to WL individual ID 03 at a desired fpr=5%.) 43



(a) Camera 1 (ROC curves) (b) Camera 1 (inverted PR curves)

(c) Camera 2 (ROC curves) (d) Camera 2 (inverted PR curves)

(e) Camera 3 (ROC curves) (f) Camera 3 (inverted PR curves)

Figure A.18: Illustration of ROC (left side) and inverted PR (right side) curves obtained from the transaction-level analysis
on three cameras with leaving sequences of Chokepoint using the TM-FR method. (The dotted lines in the curves correspond
to WL individual ID 03 at a desired fpr=5%.)
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(a) Camera 1 (ROC curves) (b) Camera 1 (inverted PR curves)

(c) Camera 2 (ROC curves) (d) Camera 2 (inverted PR curves)

(e) Camera 3 (ROC curves) (f) Camera 3 (inverted PR curves)

Figure A.19: Illustration of ROC (left side) and inverted PR (right side) curves obtained from the transaction-level analysis
on three cameras with entering sequences of Chokepoint using the TM-FR with self-update method. (The dotted lines in the
curves correspond to WL individual ID 03 at a desired fpr=5%.)
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(a) Camera 1 (ROC curves) (b) Camera 1 (inverted PR curves)

(c) Camera 2 (ROC curves) (d) Camera 2 (inverted PR curves)

(e) Camera 3 (ROC curves) (f) Camera 3 (inverted PR curves)

Figure A.20: Illustration of ROC (left side) and inverted PR (right side) curves obtained from the transaction-level analysis
on three cameras with leaving sequences of Chokepoint using the TM-FR with self-update method. (The dotted lines in the
curves correspond to WL individual ID 03 at a desired fpr=5%.)
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(a) Camera 1 (ROC curves) (b) Camera 1 (inverted PR curves)

(c) Camera 2 (ROC curves) (d) Camera 2 (inverted PR curves)

(e) Camera 3 (ROC curves) (f) Camera 3 (inverted PR curves)

Figure A.21: Illustration of ROC (left side) and inverted PR (right side) curves obtained from the transaction-level analysis on
three cameras with entering sequences of Chokepoint using the AAMT-FR method. (The dotted lines in the curves correspond
to WL individual ID 03 at a desired fpr=5%.)
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(a) Camera 1 (ROC curves) (b) Camera 1 (inverted PR curves)

(c) Camera 2 (ROC curves) (d) Camera 2 (inverted PR curves)

(e) Camera 3 (ROC curves) (f) Camera 3 (inverted PR curves)

Figure A.22: Illustration of ROC (left side) and inverted PR (right side) curves obtained from the transaction-level analysis on
three cameras with leaving sequences of Chokepoint using the AAMT-FR method. (The dotted lines in the curves correspond
to WL individual ID 03 at a desired fpr=5%.)
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Appendix A.2. Global performance measure

Table A.7: Average AUC, pAUC(5%) and AUPR for TM-FR, TM-FR with self-update, and AAMT-FR methods over all
Chokepoint videos

ID
Entering/
Leaving

Cam.
TM-FR Method TM-FR with self-update AAMT-FR Method

AUC pAUC AUPR AUC pAUC AUPR AUC pAUC AUPR

03

Entering
C1 0.856 0.255 0.378 0.856 0.255 0.378 0.909 0.242 0.385
C2 0.702 0.099 0.161 0.702 0.099 0.161 0.781 0.027 0.145
C3 0.658 0.125 0.173 0.658 0.125 0.173 0.780 0.101 0.203

Leaving
C1 0.836 0.119 0.215 0.836 0.119 0.215 0.826 0.158 0.228
C2 0.782 0.079 0.202 0.782 0.079 0.202 0.836 0.191 0.290
C3 0.837 0.156 0.283 0.837 0.156 0.283 0.754 0.155 0.251

Average
0.779
±0.04

0.139
±0.04

0.235
±0.05

0.779
±0.04

0.139
±0.04

0.235
±0.05

0.814
±0.03

0.146
±0.04

0.250
±0.05

04

Entering
C1 0.813 0.351 0.409 0.813 0.351 0.409 0.913 0.350 0.356
C2 0.749 0.345 0.388 0.749 0.345 0.388 0.937 0.557 0.586
C3 0.751 0.321 0.322 0.751 0.321 0.322 0.957 0.545 0.622

Leaving
C1 0.863 0.348 0.364 0.863 0.348 0.364 0.964 0.592 0.612
C2 0.823 0.423 0.455 0.795 0.129 0.154 0.985 0.730 0.777
C3 0.787 0.200 0.223 0.787 0.200 0.223 0.966 0.603 0.665

Average
0.739
±0.06

0.160
±0.05

0.237
±0.07

0.739
±0.06

0.160
±0.05

0.237
±0.07

0.823
±0.04

0.123
±0.06

0.244
±0.07

07

Entering
C1 0.781 0.153 0.259 0.781 0.153 0.259 0.760 0.127 0.239
C2 0.755 0.104 0.202 0.755 0.104 0.202 0.834 0.336 0.473
C3 0.723 0.135 0.185 0.723 0.135 0.185 0.843 0.238 0.330

Leaving
C1 0.833 0.246 0.279 0.833 0.246 0.279 0.924 0.325 0.487
C2 0.785 0.195 0.256 0.785 0.195 0.256 0.889 0.410 0.536
C3 0.781 0.080 0.178 0.781 0.080 0.178 0.924 0.474 0.595

Average
0.776
±0.02

0.152
±0.03

0.226
±0.03

0.776
±0.02

0.152
±0.03

0.226
±0.03

0.862
±0.02

0.318
±0.05

0.443
±0.05

09

Entering
C1 0.754 0.112 0.155 0.754 0.113 0.155 0.968 0.573 0.602
C2 0.676 0.163 0.156 0.676 0.163 0.156 0.914 0.292 0.389
C3 0.590 0.083 0.091 0.590 0.083 0.091 0.918 0.258 0.343

Leaving
C1 0.802 0.391 0.495 0.915 0.573 0.657 0.988 0.766 0.812
C2 0.875 0.493 0.587 0.915 0.556 0.638 0.989 0.860 0.914
C3 0.822 0.260 0.337 0.822 0.260 0.337 0.952 0.558 0.685

Average
0.753
±0.09

0.250
±0.06

0.304
±0.07

0.778
±0.10

0.291
±0.07

0.339
±0.08

0.955
±0.10

0.551
±0.12

0.624
±0.11

12

Entering
C1 0.759 0.208 0.260 0.908 0.402 0.495 0.965 0.532 0.592
C2 0.760 0.363 0.412 0.872 0.371 0.448 0.964 0.646 0.739
C3 0.658 0.138 0.185 0.658 0.138 0.185 0.933 0.418 0.527

Leaving
C1 0.804 0.262 0.363 0.914 0.452 0.543 0.971 0.684 0.747
C2 0.813 0.365 0.442 0.922 0.507 0.601 0.989 0.813 0.867
C3 0.798 0.201 0.275 0.798 0.201 0.275 0.944 0.667 0.25

Average
0.765
±0.02

0.256
±0.06

0.323
±0.06

0.845
±0.06

0.345
±0.09

0.425
±0.09

0.961
±0.01

0.627
±0.06

0.670
±0.05

Total Average
0.774
±0.04

0.226
±0.04

0.290
±0.05

0.794
±0.05

0.242
±0.05

0.307
±0.05

0.909
±0.04

0.441
±0.07

0.524
±0.07
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Table A.8: Average precision (P), recall (R) (or tpr), and F1 measures for TM-FR, TM-FR with self-update, and AAMT-FR
methods over all Chokepoint videos at a desired fpr=5%.

ID
Entering/
Leaving

Cam.
TM-FR Method TM-FR with self-update AAMT-FR Method
P R F1 P R F1 P R F1

03

Entering
C1 0.391 0.406 0.399 0.391 0.406 0.399 0.417 0.452 0.434
C2 0.230 0.192 0.209 0.230 0.192 0.209 0.109 0.079 0.092
C3 0.211 0.169 0.187 0.211 0.169 0.187 0.217 0.175 0.194

Leaving
C1 0.245 0.235 0.240 0.282 0.245 0.235 0.282 0.282 0.283
C2 0.210 0.279 0.286 0.228 0.292 0.279 0.228 0.200 0.213
C3 0.292 0.279 0.286 0.228 0.292 0.279 0.228 0.200 0.213

Average
0.263
±0.04

0.240
±0.05

0.251
±0.05

0.263
±0.04

0.240
±0.05

0.251
±0.05

0.270
±0.07

0.256
±0.08

0.262
±0.07

04

Entering
C1 0.330 0.420 0.340 0.330 0.420 0.370 0.407 0.586 0.480
C2 0.336 0.443 0.382 0.336 0.443 0.382 0.457 0.738 0.565
C3 0.327 0.462 0.383 0.327 0.462 0.383 0.425 0.701 0.531

Leaving
C1 0.357 0.515 0.422 0.357 0.515 0.422 0.470 0.823 0.599
C2 0.365 0.559 0.442 0.212 0.263 0.235 0.487 0.927 0.639
C3 0.209 0.299 0.247 0.209 0.299 0.247 0.419 0.814 0.553

Average
0.321
±0.03

0.450
±0.05

0.369
±0.04

0.295
±0.02

0.400
±0.04

0.339
±0.03

0.444
±0.02

0.764
±0.04

0.561
±0.02

07

Entering
C1 0.292 0.222 0.252 0.292 0.222 0.252 0.303 0.234 0.264
C2 0.237 0.183 0.206 0.237 0.183 0.206 0.397 0.386 0.391
C3 0.242 0.194 0.216 0.242 0.194 0.216 0.388 0.386 0.387

Leaving
C1 0.365 0.422 0.391 0.365 0.422 0.391 0.417 0.526 0.465
C2 0.281 0.266 0.273 0.281 0.266 0.273 0.467 0.597 0.524
C3 0.178 0.139 0.156 0.178 0.139 0.156 0.505 0.651 0.568

Average
0.266
±0.04

0.238
±0.05

0.249
±0.03

0.266
±0.03

0.238
±0.05

0.249
±0.04

0.413
±0.03

0.463
±0.04

0.433
±0.04

09

Entering
C1 0.212 0.222 0.217 0.212 0.222 0.217 0.493 0.803 0.611
C2 0.241 0.261 0.250 0.241 0.261 0.250 0.363 0.467 0.408
C3 0.151 0.133 0.141 0.151 0.133 0.141 0.371 0.439 0.402

Leaving
C1 0.402 0.491 0.442 0.473 0.655 0.549 0.569 0.966 0.717
C2 0.443 0.601 0.510 0.478 0.693 0.566 0.552 0.931 0.693
C3 0.355 0.382 0.368 0.355 0.382 0.368 0.518 0.748 0.612

Average
0.301
±0.05

0.348
±0.07

0.321
±0.06

0.318
±0.06

0.391
±0.08

0.348
±0.07

0.478
±0.07

0.726
±0.14

0.574
±0.10

12

Entering
C1 0.233 0.298 0.262 0.343 0.513 0.411 0.433 0.749 0.549
C2 0.330 0.428 0.372 0.376 0.524 0.438 0.471 0.775 0.586
C3 0.183 0.174 0.178 0.183 0.174 0.178 0.417 0.557 0.477

Leaving
C1 0.359 0.393 0.375 0.462 0.603 0.523 0.555 0.877 0.680
C2 0.391 0.496 0.437 0.465 0.670 0.549 0.553 0.953 0.699
C3 0.266 0.296 0.280 0.266 0.296 0.280 0.492 0.788 0.606

Average
0.294
±0.04

0.348
±0.06

0.317
±0.05

0.349
±0.06

0.463
±0.11

0.396
±0.08

0.489
±0.02

0.783
±0.06

0.600
±0.03

Total Average
0.289
±0.03

0.325
±0.06

0.302
±0.05

0.398
±0.05

0.346
±0.07

0.317
±0.05

0.418
±0.04

0.599
±0.07

0.486
±0.05
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Appendix B. Trajectory-Level Performance

(a) Accumulated scores when face captures are matched against the reference ROI of ID 03.

(b) Accumulated scores when face captures are matched against the reference ROI of ID 04.

(c) Accumulated scores when face captures are matched against the reference ROI of ID 07.

(d) Accumulated scores when face captures are matched against the reference ROI of ID 09.

(e) Accumulated scores when face captures are matched against the reference ROI of ID 12.

Figure B.23: An illustration of scores accumulated over time for spatio-temporal using TM-FR method on entering sequences
of Chokepoint.
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(a) Accumulated scores when face captures are matched against the reference ROI of ID 03.

(b) Accumulated scores when face captures are matched against the reference ROI of ID 04.

(c) Accumulated scores when face captures are matched against the reference ROI of ID 07.

(d) Accumulated scores when face captures are matched against the reference ROI of ID 09.

(e) Accumulated scores when face captures are matched against the reference ROI of ID 12.

Figure B.24: An illustration of scores accumulated over time for spatio-temporal using TM-FR with self-update method on
entering sequences of Chokepoint.
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(a) Accumulated scores when face captures are matched against the reference ROI of ID 03.

(b) Accumulated scores when face captures are matched against the reference ROI of ID 04.

(c) Accumulated scores when face captures are matched against the reference ROI of ID 07.

(d) Accumulated scores when face captures are matched against the reference ROI of ID 09.

(e) Accumulated scores when face captures are matched against the reference ROI of ID 12.

Figure B.25: An illustration of scores accumulated over time for spatio-temporal using AAMT-FR method on entering sequences
of Chokepoint.
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