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ABSTRACT 
 
Condition monitoring of rolling elements bearings is investigated in this paper. Recently [11], we 
have shown that Time Synchronous Averaging combined with Support Vector Machines can 
lead to efficient bearing fault diagnosis. But the generalization performance of the SVM-
boundaries was strongly affected by the transmission path of the signals. This paper is then 
concerned with the integration of Independent Component Analysis (ICA) in this diagnosis 
procedure to improve its efficiency in such cases.  
 
First, we validate the use of TSA as a signal processing tool that will automatically highlight 
bearing defect frequencies if they are present in the envelope spectrum. Next, twenty classical 
features (rms, peak, crest factor…) are extracted from the envelope of the TSA-signal. To study 
the influence of Independent Component Analysis on the generalization performance of SVM-
boundaries, the twenty dimensional feature vectors are projected in their independent 
components space. The generalization performance of SVM-boundaries and the influence of 
signal transmission path as well as the faulty bearing location are then analyzed using these 
independent components.  
 

1 INTRODUCTION 
 
Condition monitoring of industrial rotating systems has been an active field of research during 
the past four decades. There is a real demand for reliable procedures that can allow 
inexperienced users, to detect and characterize any fault condition of an operating system 
without interrupting its normal running. Condition monitoring is certainly the heart of the 
predictive maintenance philosophy. It aims at developing an effective diagnosis procedure that 
will automatically and accurately detect any fault condition on the running health of a machine. 
Since any mechanical component, generally progresses through a series of degradation states 
before failure, if such a running condition can be detected and characterized, then proactive as 
well as corrective maintenance can be performed before a catastrophic failure occurs. This 
approach therefore, offers cost savings compared to classical preventive activities which are 
performed periodically without knowing if the component is really defective.  
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Among all existing condition monitoring techniques, vibration response analysis is certainly the 
most used, because it is well understood and it can be performed in many ways [19]. 
Unfortunately, it has long been recognized that, different applications may require different types 
of analysis. For example, when rolling elements operate in the presence of strong sources of 
vibration such as gears, it has been found advantageous to apply high frequency resonance to 
highlight bearing defect frequencies in the envelope spectrum [12].  
 
Also it is well known that some parameters such as kurtosis may be good indicators of incipient 
failure of bearings, but become useless at more advanced stage of degradation. So, based on this 
parameter, bearings may be changed whereas they can still be used without leading to system 
failure. Recently, the authors [11] have investigated the combination of TSA and SVM for 
bearing fault detection. We showed that when signals used for training and testing the boundaries 
are not picked up at the same shaft location, the classification error can reach 40% in most cases 
whereas the generalization performance is above 90% when training and testing signals have the 
same transmission path. This paper will now investigate the use of Independent Component 
Analysis to improve the generalization performance of SVM bounds.   
 
Independent Component Analysis (ICA) as a pre-processing method for feature extraction has 
been successfully applied in many fields of research ranging from image and speech analysis, 
electrical brain signals (EEG signal analysis), stock market prediction, telecommunication 
[6,7,18] to condition monitoring of induction motors [22] and gearboxes [5]. Since ICA should 
eliminate the effect of random noise, we will determine if it really is the transmission path that 
affects the generalization performance or if there exists other strong sources of noise in signals 
that can explain such performance. 
 
Pattern analysis makes it possible to decide whether or not a given bearing is defective or not, 
just based on its feature vector. Pattern analysis as a decision support tool is well suited for any 
technician since it does not require strong skills in signal processing techniques. These methods 
are concerned with the minimisation of the risk associated to wrong condition state prediction.  
 
First we present an efficient procedure of obtaining TSA signals, from which a 20-dimesional 
feature vector will be extracted. Next the dimension of these features vectors will be reduced 
using ICA methods, and the computed independent components will be used in the SVM 
learning scheme. The generalization performance of the boundaries will now be analyzed and 
compared to the one previously obtained [11] without ICA.  
 

2 FEATURE EXTRACTION USING TIME SYNCHRONOUS AVERAGING AND 
INDEPENDENT COMPONENT ANALYSIS 

 
In this section, we present a simplified procedure to obtain TSA signals, and show its results 
when applied to data collected from the Case Western Reserve bearing data center [23]. Next, we 
introduce Independent component analysis and its theoretical fundaments. Finally, we explain 
our feature extraction procedure using these two methods.  
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2.1 Mc FADDEN & TOOZHY [12] model  
 
Only key points of the analysis are presented here. Interested readers are referred to their paper 
for details [12]. In this model it is assumed that the envelope spectrum contains peaks only at 
those frequencies that are harmonics of the characteristic inner race defect frequency if  
surrounded by modulation sidebands at multiples of the shaft rotation frequency rf  given by 
 i rf m f n f= +  (1) 
where m  and n  are integers. The inner race defect frequency can be related to the shaft rotation 
frequency by 
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where z  is the number of rolling elements, eD  the rolling element diameter, pD  the pitch 
diameter, β  the contact angle and cf  is the cage rotation frequency. So combining (1) and (2) 
we have  
 ( )r c rf m z f f n f= − +  (3) 
which shows that some spectrum lines also occur at integer multiples of r cf f− , the rotation of 
the shaft relative to the cage. Once the peaks in the envelope spectrum have been identified, we 
may look for an efficient way to eliminate those that are unwanted in the analysis.  
 
The computation of the synchronous average y(t) of a time signal x(t) using a trigger signal 
having a frequency tf  is equivalent to the convolution 
 ( ) ( ) ( )y t c t x t= ∗  (4) 
where c(t) is a train of N impulses of amplitude 1/N, spaced at intervals 1t tT f= , given by 
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In the frequency domain, this is equivalent to the multiplication of the Fourier transform ( )X f  

of the signal by ( )C f  the Fourier transform of ( )c t , i.e. 

 ( ) ( ) ( )Y f C f X f= ⋅  (6) 

with ( )C f  defined as 

 ( ) ( )
( )

sin1
sin

t

t

NT f
C f

N T f
π
π

=  (7) 

which is a comb filter. For very large number of averages N, only frequencies at exact multiples 
of the trigger frequency ( )f t  are passed. So if we set the trigger frequency to be t r cf f f= − , 
only frequency lines at integer multiples of r cf f−  will be kept. So, if the synchronous average is 
calculated using a trigger signal with ( )t r cf z f f= − , then the period of the average is t iT T= , i.e. 
the period between impacts. 
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However, computing TSA signals might be too complex for direct implementation in real 
applications. Its first limitation comes from the fact that a very large number of averages N is 
required to completely eliminate unwanted frequency lines. So we may be limited to short time 
duration signal, and the real time trending of a system may be difficult to achieve. Even if this 
difficulty can be solved with an appropriate trade off between the number of average and the 
signal duration, the second limitation is certainly the most problematic. It requires getting access 
to the cage of rolling elements bearings to measure its rotating frequency which is somehow 
unfeasible in many industrial applications. Facing these difficulties, we look for a simpler 
procedure to obtain a good approximation of the real time synchronous averaging of raw signals.  
 

2.2 Computation of the time synchronous averaging of vibration response signals: 
the TSAnalyzer  

 
Time synchronous averaging is a feature extraction technique that have been used successively 
to gearbox condition monitoring [8]. We have adapted its definition to bearing condition 
monitoring. TSA-signal is obtained by synchronous averaging of raw signal with a repetitive 
frequency of the desired signal, or a signal that is synchronous with the desired signal. The 
residual signal is obtained by removing the primary meshing and shaft components along with 
their harmonics from the TSA signal. 
 
We validate this approach of computing TSA with signals downloaded form the Case Western 
bearing data center. These signals come from a test rig made of a 2 hp Reliance Electric motor 
loaded by a dynamometer. The motor contains faulty bearings that can be mounted at two 
different locations: drive end (DE) and fan end (FE). Single point faults of different diameters, (7 
– 14 – 21 mils; 1 mil=0.001 inches), were created on the bearings separately at the inner 
raceway, rolling element and outer raceway using electro-discharge machining (EDM). Vibration 
signals of 10secs were collected at shaft speed of 1797, 1772, 1750 and 1730 rpm, using 
accelerometers attached on the motor housing at 12 o’clock with magnetic bases.  
 
The TSAnalyzer performs time synchronous averaging and envelope detection of the raw signals 
by convolving raw signals with a repeating sequence. We can clearly see the importance of TSA 
as a pre-processing signal tool looking at the power spectral density distributions of figures 1 and 
2. Instead of using the shaft rotation frequency as the repeating sequence frequency, we found 
that it was much more advantageous to use the theoretical bearing defect frequency (namely 
BPFO, BPFI, BPFR). Figures 2 and 3 show how important the choice of repeating frequency is 
on the envelope spectrum of TSA signal. 
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Figure 1 : Power spectral density of raw faulty bearing - 7 mils on the ball - 1797rpm – Not pre-processed by TSA 

 
 

 
Figure 2: Synchronous averaging using shaft rotation frequency as repeating frequency  

- 7 mils fault on the ball - 1797rpm 
 
There are many frequency peaks in the spectrum of Fig. 1 compared to the one of Fig. 2 where 
the shaft rotation (29.95Hz) is the peak frequency, followed by the BPFR second harmonic 
(215.4Hz). The second harmonic is higher than its fundamental (107.7Hz) because the ball hits 
the inner and outer race once per revolution of the shaft. Fig. 3 shows clearly that when the 
BPFR is chosen as the repeating frequency, the envelope spectrum is much freer of undesired 
frequency peaks. The BPFR and its five following harmonics are well highlighted in the 
envelope spectrum. Similar results were obtained for faults on the inner (Fig. 4) and outer race 
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(Fig. 5). The two signals are modulated by the shaft rotating frequency in the case of a fault on 
the inner race and by the change of the load forces during one revolution when the fault is on the 
outer race.  
 
 

 
Figure 3: Synchronous averaging using BPFR as repeating frequency - 7 mils fault on the ball - 1797rpm 

 

 
Figure 4: TSA with BPFI, Drive end bearing - 7 mils on the inner race - 1797rpm 

 

 
Figure 5 : TSA with BPFO, Drive end bearing - 7 mils on the outer race - 1797rpm 

 
Once the TSAsignals have been computed, we can now compute the residual signal. Fig. 6 
shows an example of the residual signal for the case of a 007 mils spall on the inner race. The 
observed sidebands correspond to the frequencies i rf f−  and i rf f+ : i.e. 131Hz and 191Hz 
respectively. 
 

 
Figure 6: Residual signal, Drive end bearing - 7 mils on the inner race - 1797rpm 
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2.3 Feature extraction using independent component analysis 

2.3.1 Theoretical background  
 
Independent Component Analysis (ICA) is a statistical and computational technique for 
revealing hidden factors that underlie sets of random variables, measurements or signals. ICA 
was originally proposed to solve Blind Source Separation problems. ICA is based on the simple 
and realistic assumption that if different signals are from different physical processes (e.g. fault 
on inner and outer race), then those signals are statistically independent. Independent component 
are found by maximizing a given measure of independence (non-gaussianity) such as kurtosis 
and negentropy or by minimizing mutual information and maximum likelihood estimation. The 
fundamental restriction in ICA is that the independent components must be non-gaussian for ICA 
to be possible.  
 
So given l measured variables, ( ) ( ) ( ) ( )1 2x lk x k x k x k⎡ ⎤= ⎣ ⎦…  at sample k  can be 

expressed as linear combinations of r unknown independent components [ ]T1 2 rs s s…  
where r l≤ ; the relationship between them is given by  
 X = A S + E  (8) 
where X l n×∈ℜ is the data matrix made of n signals, A l r×∈ℜ is the mixing matrix, S r n×∈ℜ  in 
the independent component matrix and l nE ×∈ℜ  is the residual matrix. So the basic problem of 
ICA is to estimate S and A only using X. One way to achieve this is to calculate a separating 
matrix W so that the components of the reconstructed data matrix S  become independent of 
each other, i.e.  
 Ŝ W X= ⋅  (9) 
The first step of ICA is to pre-whiten the measured data vector x  by a linear transformation, to 
produce a vector x�  whose elements are mutually uncorrelated and all have unit variance. 
Singular value decomposition (SVD) of the covariance matrix yields  
 TC = ΨΣΨ  (10) 
where ( )1 2diag nσ σ σΣ = …  is a diagonal matrix of singular values and Ψ  is the 
associated singular vector matrix. Then, x�  can be expressed as  
 1/ 2 Tx  x Q A s B s−= Σ Ψ = =�  (11) 
where B is an orthogonal matrix, with TB B I= . SVD also allows noise reduction by discarding 
singular values smaller than a given threshold. The problem therefore consists in finding the 
orthogonal matrix B which has fewer parameters than the full rank matrix A.  
 
The second step is to employ the fixed-point algorithm to determine W by optimizing some 
measure of non-gaussianity. Hyvarinen and Oja [6, 7] showed that non-Gaussian is equivalent to 
independence using the central limit theorem. There are two common measures of non-
gaussianity: kurtosis and negentropy. Kurtosis is sensitive to outliers. On the other hand, 
negentropy is based on the information theoretic quantity of (differential) entropy. Based on 
approximate form for the negentropy, Hyvarinen [7], introduced a very simple and highly 
efficient fixed-point algorithm for ICA (available in The FastICA MATLAB Package), 
calculated over sphered zero-mean vector x� . This algorithm calculates one column of the matrix 
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B and allows the identification of one independent component; the corresponding independent 
component can then be found as  
 Tx B Q x=�  (12) 
The algorithm is repeated to calculate each independent component. 
 

2.3.2 Feature extraction using ICA 
 
We have divided each downloaded signals in three equal signals to have more signals available 
for learning and testing. This way, we obtain 36 data for the inner race fault, 33 for the rolling 
element fault and 84 for the outer race fault for each bearing location (DE and FE). The feature 
vector will consist in classical time and frequency parameters evaluated from the TSA signal 
obtained. As statistical parameters, we have peak value, rms, crest factor, skewness, kurtosis, 
impulse factor, some statistical moments [10]. As frequency parameters, we take the peak 
frequency and its amplitude, arithmetic mean, geometric mean, normalized kurtosis, total energy 
of the spectrum, energy of some frequency interval of the spectrum and FMO [8]. We thus obtain 
a 20-dimensional feature vector whose independent components will be computed and used by 
the learning algorithms. The number of independent components was automatically determined 
by the FastICA algorithm as being 16. The norm of the residual matrix E during this process was 
7.4, which is acceptable according to the number of data.  
 

3 SUPPORT VECTOR MACHINES FOR FAULT DETECTION  
 

3.1 Pattern analysis as a principle of risk minimisation  
 
Statistical learning theory was initially developed at the end of sixties by Vladimir Vapnik. Over 
the four past decades, the learning theory has been successfully applied in many fields; condition 
monitoring being one of them. Artificial Neural Networks (ANNs) and Support Vector Machines 
(SVMs) were reported as being the most suitable pattern recognition methods for damage 
identification in rotating machinery [9, 11]. The main difference between ANNs and SVMs is in 
the principle of risk minimisation (RM). Statistical learning theory aims in finding hypothesis 
classes of function defined as ( ): x xfΦ 6  which minimize the functional risk defined by  

 ( ) ( )1R y x x, y
2

f dP= −∫  (13) 

where x  is a set of l elements associated to labels iy  that have an unknown probability 
distribution function ( )x, yP . The functional risk is a measure of the error that is made when we 
are using the hypothesis classes of function Φ  to find y . In case of SVMs, structural risk 
minimisation (SRM) principle is used minimising an upper bound on the expected risk whereas 
in ANNs, traditional empirical risk minimisation (ERM) is used minimising the error on the 
training data. The difference in RM leads to better generalisation performance for SVMs than 
ANNs. Many researchers have reported that SVMs were performing better than ANNs for 
classification tasks with limited amount of training data.  
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The Empirical Risk is defined as  

 ( )
l

emp i i
i=1

1R y x
2

f
l

= −∑  (14) 

Vapnik showed that the empirical risk was an upper bound of the functional risk,   

 emp

2log 1 log
4R R

lh
h

l

η⎡ ⎤⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦≤ +  (15) 

with h  being defined as the Vapnik-Chervonenkis (VC) dimension and η the learning rate.  
 

3.2 Support vector classification  
 
Support Vector Machines are a set of efficiently learning systems that use a hypothesis space of 
linear functions in a high dimensional feature space. The simple SVM algorithm solves a binary 
problem of classification of data into two distinct classes. The data are divided by a hyperplane 
which is defined by a number of support vectors. Support vectors are a subset of the training data 
available for both cases, and are used to define the boundary between the two classes. The use of 
the support vectors allows complex boundaries to be created, and through the minimization of a 
quadratic programming problem, the margin of separation between each class of data is 
maximized. 
 
The simplest model of Support Vector Machine is the maximum margin classifier. Let N-
dimensional input data ix , 1i N= …  belong to class I or class II, with associated labels iy 1=  for 
class I and iy 1= −  for class II. If the data are linearly separable, we can determine a hyperplane 

( )xf  that will separate the data following the rule ( )ix 0f ≥  if ix  belongs to class I and 

( )ix 0f <  if ix  belongs to class II.  

 ( )
1

x w x
N

j j
j

f b w x b
=

= ⋅ + = +∑  (16) 

with w being the N-dimensional normal vector defining the hyperplane and b  the learning bias, 
i.e. the hyperplane distance from the space origin. The optimal hyperplane maximizes the 
geometrical margin and it can be found by solving the following convex quadratic optimization 
problem 

 
( )

2

i i

1min w
2

s.to  y w x 1b⋅ + ≥
 (17) 

The corresponding dual problem is then  
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One important property of SVMs is that the solution is sparse in α  as many training sample lie 
outside the margin area and their associated lagrangian multipliers iα  are zero. According to the 
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Karush-Kuhn-Tucker conditions the equality in the constraint of equation (17) will hold for the 
training pair ( )i ix , y  only if 0iα ≠ . In this case, we say that ix  is a support vector. 
 

 
Figure 7 : Illustration of support vectors 

 
If we cannot separate the classes by means of linear decision functions, one can map input 
vectors onto a higher dimensional feature space F where we expect them to be linearly separable. 
By choosing a non-linear mapping φ : Fℜ→  the SVM constructs an optimal separating 
hyperplane in this higher dimensional space. The hyperplanes in the feature space represent non-
linear surfaces and curves in the originating space. Using the non-linear function ( )xφ  that maps 
the N-dimensional input vector ix  into the l -dimensional feature space, the linear decision 
function is given by 

 ( ) ( ) ( )i i
1

x x x
N

i i
i

f y bα φ φ
=

= ⋅ +∑  (19) 

Fortunately, we can calculate the scalar product ( ) ( )ix xφ φ⋅ without knowing explicitly the 

mapping function ( )xφ  thanks to the kernel trick, i.e.  

 ( ) ( ) ( )1 2 1 2,K x x x xφ φ= ⋅  (20) 
The kernel trick exploits the Cover theorem which asserts that a classification problem 
embedded nonlinearly in a high dimensional space is more likely to be separable than in a low-
dimensional space. Making use of the kernel function, the decision function becomes 

 ( ) ( )i i
1

x x , x
N

i i
i

f y K bα
=

= +∑  (21) 

Many kernel functions (polynomial, radial basis function) are possible, as long as they obey the 
so-called Mercer’s conditions so that equation (20) holds. Several SVMs algorithms were 
proposed in the literature [2,3,20,21] to handle strong linearity in data.  
 
Multi-class classification using SVMs is still an active research field. The original formulation 
proposed by [15] uses the one-against-all decomposition to a set of binary problems. For k-class 
classification problem, it constructs k binary SVMs, the ith classifier being trained with all the 
samples from the ith class against all the samples of the rest classes. Another approach for multi-
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class classification is the one-against-one method. This method consists in training k (k−1)/2 
binary SVMs between pair-wise classes. Each classifier casts one vote for its favoured class and 
the datum to be classified will be assigned to the class which will have the maximum number of 
votes [6]. 
 
In this paper we will opt for the nu-soft margin approach using a radial basis function. The 
optimization of the Lagrangian dual problem is made using the Matlab function quadprog. The 
multi-classification task will be done using the one against one method, consisting in training 
3(3−1) 2 = 3 binary classifiers, i.e. 
 

ball vs outer race = blorBound 
ball vs inner race = blirBound 

inner race vs outer race = irorBound 
 
Each classifier will be trained and validated with data coming from the drive end fault and tested 
with data coming from faulty bearing in the fan end fault, in order to test the influence of the 
signal transmission path on the classification results. For this purpose, we have defined a special 
notation to handle signals obtained from Drive or Fan end faulty bearing and picked at different 
locations. For example, a signal obtained from the drive end faulty bearing with a fault on the 
inner race, and picked up at the fan end side will have the name DEirfe. If the fault is on the 
outer race of the fan end faulty bearing and the signal is picked up at the drive end side, the name 
will be FEorfe. This notation will be used in the presentation of results to specify the nature of 
the fault, the origin of the signal and the location of the faulty bearing tested. 
 

4 RESULTS 
 
The influence of the faulty bearing location and the signal transmission path on the 
generalization performance of svm boundaries is measured by testing these boundaries with 
signals coming from the same and different bearing location (DE and FE) and picked up at 
different shaft ends.  
 

4.1 Training separately with Drive and Fan End fault bearing signals 
 
Looking at results presented in Tables 1 to 6, we notice that when testing signals come from the 
same end side (de or fe), the classification success reaches 95% or higher in general. However, 
when the testing signals are not collected on the same side than the training signals, the 
generalization performance is decreased significantly between 70% and 50% in most cases.  
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Table 1: blirBound, Drive End faulty bearing 

Testing signals Training signals DE...de DE...fe 
DE...de 97.2% 50% 
De...fe 50% 98.61%

 
Table 2: blorBound, Drive End fault bearing 

Testing signals Training signals DE...de DE...fe
DE...de 95.8% 70% 
DE...fe 70% 99.2% 

 
Table 3: irorBound, Drive End fault bearing 

Testing signals Training signals DE...de DE...fe
DE...de 98.3% 70% 
DE...fe 70% 98.3% 

 

 
Table 4: blirBound, Fan End fauly bearing 

Testing signals Training signals FE...de FE...fe
FE...de 100% 50% 
FE...fe 50% 100% 

 
Table 5: blorBound, Fan End faulty bearing 

Testing signals Training signals FE...de FE...fe
FE...de 95.7% 34.7%
FE...fe 64.5% 96.8%

 
Table 6: irorBound, Fan End faulty bearing 

Testing signals Training signals FE...de FE...fe
FE...de 99% 65.2%
FE...fe 64.5% 99% 

 
 
The same comments hold for the multi-classification results shown in Tables 7 and 8. Since 
the training and the testing signals come from the same side, the generalization performance 
of the classifiers is better than 95% in most cases.  
 

Table 7: Multi-classification success rate using DE bearing -bounds 

Boundaries de-side bounds fe-side bounds 
Testing signals DEblde DEirde Deorde DEblfe DEirfe Deorfe 

Success rate 88.9% 94.4% 97.62% 94.4% 97.2% 98.81% 
 

Table 8: Multi-classification success rate using FE bearing -bounds 

Boundaries de-side bounds fe-side bounds 
Testing signals FEblde FEirde Feorde FEblfe FEirfe Feorfe 

Success rate 100% 97% 93.33% 94% 100% 96.77% 
 
Tables 9 to 14 show that bearing fault location has a more significant impact on the results of 
the classification. The highest success rate reached is 70% and the lowest one is 30%. These 
results are not much better than the ones without ICA [11] as expected first. We can explain 
these results by using the Cover’s theorem which asserts that the generalization will always be 
better in a feature space of higher dimension.  
 

Table 9: blirBound, Drive End faulty bearing 

Testing signals Training signals FE...de FE...fe
DE...de 50% 50% 
DE...fe 50% 50% 

 

Table 10: blorBound, Drive End fault bearing 

Testing signals Training signals FE...de FE...fe 
DE...de 64.5% 65.26%
DE...fe 64.5% 65.26%
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Table 11: irorBound, Drive End fault bearing 

Testing signals Training signals FE...de FE...fe 
DE...de 64.5% 65.26%
DE...fe 64.5% 65.26%

 
 

Table 12: blirBound, Fan End fauly bearing 

Testing signals Training signals DE...de DE...fe
FE...de 50% 50% 
Fe...fe 50% 50% 

 

Table 13: borBound, Fan End faulty bearing 

Testing signals Training signals DE...de DE...fe
FE...de 30% 30% 
FE...fe 70% 70% 

 
Table 14: irorBound, Fan End faulty bearing 

Testing signals Training signals DE...de DE...fe
FE...de 70% 70% 
FE...fe 70% 70% 

 

 
4.2 Results of classification when combining Drive and Fan End fault bearing 

signals when training 
 
In this section, we present the results obtained when signals coming from the two faulty 
bearings are both used for training. For this purpose, we adopt the following: debl, deir, deor, 
refer to signals picked up on the drive end side, and febl, feir and feor, for signals picked up 
on the fan end side.  
 
Tables 15 and 16 give the results obtained when testing and training signals are not picked up 
on the same side. The generalization performances of the boundaries are the same.  
 

Table 15: Classification success rate when testing de-side boundaries with fe-side signals 

de-side boundaries (signals tested) Generalization  
blirbound (blfe and irfe) 50% 
blorbound (blfe and orfe) 67.9% 
irorbound (irfe and orfe) 67.9% 

 
Table 16: Classification success rate when testing fe-side boundaries with de-side signals 

fe-side boundaries (signals tested) Generalization  
blirbound (blde and irde) 50% 
blorbound (blde and orde) 67.6% 
irorbound (irde and orde) 67.6% 

 
Table 17 gives the success rate in the multi classification scheme. Most stricking results are 
the 0% scores obtained by signals with faults on the rolling elements and the inner race when 
classified by boundaries trained with signals coming from the opposite side.  
 

Table 17: Multi-classification success rate when combining DE and FE bearings during training 

Boundaries blde irde orde blfe irfe orfe 
de-side 87% 84% 92.3% 0% 0% 100% 
fe-side 0% 0% 100% 88.4% 88.4% 94.5% 

 
We can explain these results as a particular case of the one-against-one method, i.e. each 
classifier casts a different vote from the other and the data can not be assigned to one class 
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since each class has the same number of votes. For example blirBound votes ‘bl’ fault, 
blorbound chooses ‘or’ and irorbound gives ‘ir’, thus each type of faults has 1 vote, and the 
multi-classifier can not decide which class wins the voting pool. The one-against-all method 
may have performed better in those cases. On the contrary, signals from outer race fault are 
always well classified even if testing signals come from different sides.  
 
Looking generally at these results, we notice that the SVM boundaries performed better with 
ICA only in the cases where our first analysis [11] performed well. In others cases, the results 
are either quite similar or worse. So if ICA is taken as a noise filtration technique as reported 
in many studies [4-7,18,22], the fact that the generalization performance of SVM boundaries 
is not better is strictly related to the fact that the data do not contain meaningful information 
that can be used by the classifiers. This suggests that, the signal transmission path and the 
faulty bearing location are critical in the development of the diagnosis procedure.  
 

5 CONCLUSION  
 
In this paper, we have studied the integration of independent component analysis in the TSA-
SVM based bearing fault diagnosis. Results show that ICA should be handled carefully in this 
procedure since the generalization performance can be improved only in the case where the 
first approach has given good results [11]. In fact, the faulty bearing location and the signal 
transmission path are critical in this analysis, and it may not be realistic to assume that their 
impact can be attenuated by carrying ICA.  
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