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Abstract. The offline Handwritten Signature Verification (HSV) prob-
lem can be considered as having difficult data since it presents imbalanced
class distributions, high number of classes, high-dimensional feature space
and small number of learning samples. One of the ways to deal with this
problem is the writer-independent (WI) approach, which is based on the
dichotomy transformation (DT). In this work, an analysis of the difficulty
of the data in the space triggered by this transformation is performed
based on the instance hardness (IH) measure. Also, the paper reports on
how this better understanding can lead to better use of the data through
a prototype selection technique.

Keywords: Offline signature verification · Writer-independent signature
verification · Dichotomy transformation · Prototype selection · Instance
hardness.

1 Introduction

Handwritten signature is one of the oldest accepted biometric characteristics
and is still widely used to verify if a person is who he/she claims to be [2]. The
handwritten signatures verification (HSV) systems are used to classify query
signature as genuine or forgeries. While genuine signatures are those that really
belong to the indicated person, forgeries are those created by other people and
can be categorized as [11]: (i) random forgeries, where the forger does not know
both the name and the signature pattern of the signer; (ii) simple forgeries, in
which the forger only has the access to the name of the writer but does not know
the signature pattern; (iii) skilled forgeries, where the forger has the knowledge
of both the name and the signature pattern of the signer (resulting in forgeries
more similar to the genuine signatures).

While being researched for a long time the HSV problem still remains chal-
lenging. Depending on how it is handled, the following challenges can be faced:
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imbalanced class distributions, high number of classes, high-dimensional feature
space and small number of learning samples [8]. A specific concern is related to
the skilled forgeries since they tend to be very similar to the genuine signatures
and, in real applications, they are not available during the training phase of the
classifier (which should be trained only with genuine signatures and the random
forgeries) [8].

There are two approaches for building offline HSV systems. In the Writer-
Dependent (WD) systems, a verification model is trained for each user. Although,
in general, WD systems present good performance for the HSV task, requiring
a classifier for each user increases the complexity and the cost of the system
operations as more users are added. Also, the small number of genuine samples
per user is a problem that often needs to be addressed. The other systems are
known as Writer-Independent (WI). In WI, a single model is trained for all users
from a dissimilarity space generated by the dichotomy transformation (DT). Thus,
the classification inputs are dissimilarity vectors, which represent the difference
between each feature of a questioned and a reference signature of the writer. WI
systems are less complex but in general obtain worse results, when compared to
the WD approach [7].

Since the samples in dissimilarity space generated by the dichotomy trans-
formation are formed through the combination two by two of signatures (a
questioned and a reference signature), this approach is able to increase the
number of samples in the WI-HSV scenario. Thus, the small number of samples
is no longer a problem. Moreover, the system can be developed to handle the
class imbalance by generating a similar number of samples for the positive and
negative classes. However, many samples in the WI-HSV scenario are redundant
and have little influence for training the verification model. Thus, the use of
prototype selection (PS) techniques in the dissimilarity space may enable the
reduction of the complexity and the computational cost of training a classifier
without deteriorating the final model performances [5].

The objective of this paper is (i) to understand the difficulty of the data and
(ii) to analyze the use of prototype selection in the offline WI-HSV based on the
dichotomy transformation. Related to (i) the instance hardness (IH) measure is
used to achieve the stated objective. The IH is a metric used both to identify hard
to classify instances and also to understand why they are hard to classify [12].
One of the advantages of understanding the instances misclassification is to have
ideas about the best preprocessing technique or the best classifier to be used [12].
To complement this understanding, in (ii), we analyze if a prototype selection
preprocessing can be applied without degrading the performance of the classifier
and whether preprocessing based on a systematic prototypes selection technique
is better than a random subsampling.

This paper is organized as follows: Section 2 presents the HSV problem and
the dichotomy transformation as fundamentals related to this work. Section 3
contains the discussion and the conducted experiments for both the prototype
selection and the instance hardness analysis. In the last section, the conclusion
and the future works are presented.
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2 Fundamentals

2.1 Handwritten Signature Verification (HSV)

The problem of automatic handwritten signature verification (HSV) is commonly
modeled as classifying a given signature as genuine (i.e. belonging to the indicated
writer) or forgery (created by someone else) [2, 8]. Figure 1 depicts examples of
signatures, from the GPDS dataset. Each row represents a different writer and
for each writer the first three signatures are genuine and the last one is a skilled
forgery.

Fig. 1. Signatures.

In the skilled forgeries the forger knows both the name and the signature
pattern of the signer and will attempt to imitate the genuine signature. Thus,
genuine signatures and skilled forgeries tend to be very similar. From Figure 1,
one can see that skilled forgeries are more similar to the genuine signature than
the random forgeries (the genuine signatures from other users).

Also, in a real scenario, the systems are trained with partial knowledge.
In general, the training set of HSV systems are composed only of genuine
signatures without access to skilled forgeries [8]. So, the classifier is trained
without information capable of distinguishing between genuine signatures and
forgeries. However, during the verification process the system will have to both
reject the forgeries and accept the genuine signatures.

Furthermore, the number of genuine samples per user is often small (between
3-5 signatures) and there is great intra-class variability. This is difficult to tackle
since the few available signatures are not sufficient to capture the full range of
variation [8]. Figure 1 shows the variability in the genuine signatures.

In the WD systems, one classifier is trained for each user. In the WI case, a
single model is trained for all users and the classification only depends on the
input reference signature. The common practice for WI-HSV systems is to train
using the development set D and to test using the exploitation set ε. In general,
these sets have different subset of users [7].

The current state-of-the-art in feature representation for offline signatures
is reported in the paper by Hafemann et al. [7], which uses Deep Convolutional
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Neural Networks (DCNN) for learning the signature representations in a WI way.
So, it tries to learn a new feature space with the most representative properties
of the handwritten signatures. As a WI approach, the learned representation
space is not specific for a single set of users and is able to use data from as many
users as possible. In this work, the 2048 features obtained from the FC7 layer of
the DCNN called SigNet are used as feature vectors [7] (available online4).

2.2 Dichotomy Transformation (DT)

The Dichotomy Transformation (DT), proposed by Cha and Srihari [3], is an
approach that allows to transform a multi-class problem (as the offline HSV)
in a 2-class problem. The Dichotomy Transformation has already been used in
various contexts, including writer identification [1] and for handwritten signature
verification [4, 11, 14]. For the HSV context, it can be presented as follows: given
a reference signature and a questioned signature, the objective is to determine
whether the two signatures were produced by the same writer.

In a more formal definition, let xq and xr be two feature vectors in the feature
space, the distance vector in the dissimilarity space resulting from the Dichotomy
Transformation, u, is computed by equation 1:

u(xq,xr) =


|xq1 − xr1|
|xq2 − xr2|

...
|xqn − xrn|

 (1)

where | · | represents the absolute value of the difference, xqi and xri are the n-th
feature of the signatures xq and xr respectively, and n is the number of features.
It is worth highlighting that each component of the u vector is equal to the
distance between the corresponding components of the vectors xq and xr. Thus,
both the distance vector and the feature vectors have the same dimensionality.

As previously noted, in the dissimilarity space, regardless of the number of
writers, there are only two classes: (i) The within/positive class w+: composed
of distance vectors computed from samples of the same writer (i.e., intraclass
distances). (ii) The between/negative class w−: composed of distances vectors
computed from samples of different writers (i.e., interclass distances).

Systems based on the DT approach need datasets already transposed into
the dissimilarity space to train a dichotomizer (two classes classifier), which will
be used to perform the verification task. Generally, the writers that are in the
training set are not part of the test set [3].

When users have more than one reference signature, the dichotomy trans-
formation is applied between the feature vector xq of the questioned signature
and the writer’s reference set {xr}R1 , producing a set of dissimilarity vectors
{ur}R1 , where R is the number of signatures in the reference set. For example,

4 http://en.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-
innovation/Projets/Signature-Verification
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if a writer has 3 reference signatures (R = 3) and {ur}R1 = {u1,u2,u3}. Then,
the dichotomizer evaluates each dissimilarity vector individually and produces a
set of partial decisions {f(ur)}R1 [11]. The final decision about the questioned
signature is based on the fusion of all partial decisions by a function g(·) and
depends on the output of the dichotomizer, e.g. (i) in a label case, then the
majority vote is an appropriate function, (ii) in a probability or distance output,
the sum, mean, median, max, and min functions can be used [11].

It is expected that the signatures from the same writer be close to each other
in the feature space. Hence, they will be clustered close to the origin in the
dissimilarity space. In turn, signatures of different writers are typically distant
from each other in the feature space and away from the origin in the dissimilarity
space [3]. This behavior can be seen in Figure 2, which depicts a 2D feature
space with three writers (classes 1, 2 and 3), each one with 10 signatures and the
respective dichotomy transformation to the dissimilarity space.

Fig. 2. On the left, samples from three different writers are represented in the feature
space. On the right is the representation after the dichotomy transformation.

However, this does not always happen. A disadvantage of DT is that writers
perfectly grouped in the feature space may not be perfectly separated in the
dissimilarity space [3]. In other words, the more scattered the writers’ samples are
in the feature space, the smaller is the ability of the dichotomy transformation to
separate the samples from the positive and negative classes [11]. This behavior
can be seen in Figure 3.

Other properties of the dichotomy transformation deserve to be highlighted.
Firstly, DT is able to increase the number of samples in the dissimilarity space,
hence it is composed of each pair of signatures. That is, if K writers provide a
set of R reference signatures each, the equation 1 generates up to (KR

2 ) different
distances vectors. Of these, K(R2 ) belong to the positive class and (K2 )R2 to the
negative class [11]. Thus, even using a small amount of reference samples from
each writer, the dichotomy transformation is able to generate a large amount
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Fig. 3. On the right the dissimilarity space was not able to perfectly separate samples
from the within and between classes. This was due to the sparsity of the samples in the
feature space (left).

of samples in the dissimilarity space. The increased number of samples can be
visualized in both Figures 2 and 3. In Figure 2, for example, 30 samples from the
feature space were transformed into 435 samples in the dissimilarity space (being
135 samples from positive class and 300 negative samples).

Also, DT affects the geometry of the data distribution. In addition, the vectors
in the dissimilarity space are always non-negative, since they consist of distances
transformed into absolute values [3]. Both of these properties can be seen in both
Figures 2 and 3.

To illustrate how the verification process through dichotomy transformation
is independent of writer, given xq and xr as respectively a questioned and a
reference feature vector, both of a new writer “class 4”. The DT computes the
distance vector u between xq and xr (Eq. 1), which must be located in the within
region of the dissimilarity space, being the dichotomizer able to authenticate
the questioned and reference signatures as belonging to the same writer. On the
other hand, if the same scenario were used in the feature space, the model would
fail to perform the classification. In fact, it is impossible for the feature domain
model to properly classify signatures as belonging to the “class 4” writer, since
this writer is not present in the training set. Therefore, the writer-independence
of system is obtained by the use of the dichotomy transformation [11].

3 Experiments

The objective of the experiments is to both analyze the use of prototype selection
applied to the offline WI-HSV based on dichotomy transformation and also obtain
a better understanding on the difficulty of the data from the dissimilarity space
generated by the dichotomy transformation based on the instance hardness (IH)
measure.
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3.1 Dataset

The experiments are carried out using the GPDS dataset, which has 881 writers
and 24 genuine signatures plus 30 skilled forgeries per writer. We use the GPDS-
300 segmentation, so the Exploitation set ε is composed by the first 300 writers,
the other ones form the Development set D.

The Development set segmentation was done considering the methodology
adopted by Rivard et al. [11] and by Eskander et al [4]. The learning set L is
generated using a subset of 14 of the 24 genuine signatures from the development
dataset. So, the positive class samples are all computed using genuine signatures
from every writer, as in Table 1. To generate an equivalent number of counterex-
amples, the negative class is formed by using 13 genuine signatures (reference
signatures) against 7 random forgeries, each one selected from a genuine signature
of 7 different writers (Table 1). The Exploitation set is acquired as in [7].

Table 1. Development set segmentation of the GPDS-300 dataset.

Learning set (L)
Positive Class Negative Class

Distances among the 14 signatures per
writer (D1)

Distances among 13 signatures per writer
and 7 random signatures of other writers

581 · 14 · 13/2 = 52, 871 samples 581 · 13 · 7 = 52, 871 samples

3.2 Experimental setup

Before feeding the classifier, the distance vectors u (in the dissimilarity space)
are standardize by removing the mean and scaling to unit variance.

In this paper, the SVM is used as writer-independent classifier with the
following settings: RBF kernel, γ = 2−11 and C = 1.0 [14]. The predicted
confidence scores for samples are used as classifiers output. The confidence score
for a sample is the signed distance of that sample to the classifier’s hyperplane [14].

All data were randomly selected and a different SVM was trained for each
replication (ten replications for each experimental configuration were performed).

The performance evaluation of the classification methods is based on the Equal
Error Rate (EER) metric with user thresholds (considering just the genuine
signatures and the skilled forgeries) [7]. In the paper by Souza et al. [14], in
general, for the tested dataset, the best results are obtained using the highest
number of references and max as fusion function. So, only this approach is
considered. To evaluate the effectiveness of the results, the Wilcoxon paired
signed-rank test with a 5% level of significance was conducted to confirm if two
methods are significantly different.

3.3 Using Prototype Selection (PS)

Considering the main characteristics of the WI dichotomy transformation, it is
able to handle with some of the HSV problem difficulties when compared to
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the WD approach. (i) The DT reduced the high number of classes to a 2-class
problem. (ii) The problem is no longer imbalanced as both positive and negative
classes have the same number of samples (Table 1). (iii) The small number of
samples is no longer a problem (Table 1). The dichotomy transformation was
able to increase the number of samples in the WI-HSV scenario, yet many of
them are redundant (a disadvantage). Thus, the use of prototype selection in the
dissimilarity space can reduce the impact of this redundancy issue.

Prototype Selection (PS) approaches aim to obtain a representative training
subset, in general, with a lower number of samples compared to the original one
(SelectedSubset ⊆ TrainingSet) [5]. One of the main advantages of PS methods
is the capacity to choose relevant training examples. So, by using the selected
subset, it is expected to obtain similar or even better performance of the classifier
during the generalization phase.

In the paper by Pekalska et al. [10], the authors present the prototype
selection as an important preprocessing technique to be considered when dealing
with dissimilarity-based classification. In their experiments they showed that by
using well chosen selected prototypes, it is possible obtain a similar or higher
classification performance at a lower computational cost in the classifier training
process, when compared to the use of all the original training samples. To the
best of our knowledge, this analysis has not yet been done specifically for the
dichotomy transformation scenario.

In this work, the classical Condensed Nearest Neighbors (CNN) is used as
prototypes selection technique. This approach maintains the instances that are
misclassified by a 1-NN classifier, discarding them otherwise [9]. The CNN was
choosen because its main property is to reduce the training set size by removing
redundant instances (i.e. samples that will not affect the classification accuracy
of the training set), retaining the instances closer to the decision boundaries [5].
In our experiments, the KCNN is set to 1, as in the original algorithm [9].

The following experiments compare the application of prototype selection
before training the SVM, considering the GPDS-300 dataset. The % SVM
represent the models with uniformly random subsampling: 1.0%, 5.0% and 10.0%
of the original training set were used. The Condensed Nearest Neighbors is called
CNN SVM in the tables.

Tables 2 and 3 present, respectively, the comparative analysis on the number
of training samples and the EER metric obtained by the WI-SVMs (with and
without prototype selection). It is worth noting that Table 3 contains both the
comparison of the SVMs and also the results from the state of the art models.

Table 2. Comparison of WI-SVMs considering the number of training samples.

Model #Positive Samples #Negative Samples #Retained Samples (%)
SVM 52871 52871 100.00 (0.00)
1% SVM 531.70 (17.04) 526.30 (17.04) 1.00 (0.00)
5% SVM 2648.10 (24.78) 2639.90 (24.78) 5.00 (0.00)
10% SVM 5289.30 (31.69) 5285.70 (31.69) 10.00 (0.00)
CNN SVM 345.90 (15.25) 4437.80 (125.11) 4.52 (0.13)
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Table 3. Comparison of EER with the state-of-the-art on the GPDS-300 dataset,
WI-SVMs using Max as fusion function (errors in %).

Type Model #references EER
WD Soleimani et al. [13] 10 20.94
WD Hafemann, Sabourin and Oliveira [6] 12 12.83
WD Hafemann et al. [7] 5 3.92 (0.18)
WD Hafemann et al. [7] 12 3.15 (0.18)
WI SVMmax 12 3.69 (0.18)
WI 1% SVMmax 12 3.54 (0.26)
WI 5% SVMmax 12 3.62 (0.32)
WI 10% SVMmax 12 3.48 (0.12)
WI CNN SVMmax 12 3.47 (0.15)

From Table 2, the use of the PS method allowed the SVM to be trained
with a much smaller number of samples. Thus, when compared to the model
trained with all the original training set, by using PS it was possible to obtain
comparable performance (Table 3) with a reduction in computational cost and
complexity in SVM training, considering the offline WI-HSV scenario.

As can be observed in Tables 2 and 3, a simple random subsampling with
1.0% of the training samples maintains the results when compared to the SVM
trained with all the original training set. This demonstrates how redundant the
samples resulting from the dichotomy transformation are for this dataset.

As presented in Table 3, even operating in a writer-independent way, both
models with and without preprocessing obtained comparable results for the
EER metric when compared to the WD-model from Hafemann et al. [7] for
the GPDS-300 dataset. In the comparison to the other models, the proposed
approach obtained better results.

By using a systematic PS, such as the CNN, more attention can be given for
border samples. Thus, the prototype selection can be used without degrading
the performance of the WI-classifier and still avoid to store more instances than
are necessary for an accurate generalization.

Another point that should be considered when studying the difficulty of the
data in the WI-HSV scenario is the available number of reference signatures.
Figure 4 depicts the average EER for the CNN SVM as a function of the
number of reference signatures used for verification. As can be observed, the less
signatures are used, the more difficult the problem becomes.

3.4 Instance Hardness (IH) analysis

The instance hardness (IH) is a metric used to identify instances that are hard
to classify and to understand why they are misclassified [12]. In this work, the
kDisagreeing Neighbors (kDN) is used as instance hardness measure. Given an
instance’s neighborhood, the kDN represents the percentage of instances that
do not have the same label of itself. This metric has a high correlation with
the probability that a given instance is misclassified by different classification
methods [12]. The kDN hardness measure is computed by Equation 2:
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Fig. 4. Performance of the CNN SVM varying the number of references.

kDN(xq) =
|xk : xk ∈ KNN(xq) ∧ label(xk) 6= label(xq)|

K
(2)

where KNN(xq) represents the set of K nearest neighbors of a query instance
xq and xk represents an instance in its neighborhood. label(xq) and label(xk)
represent the class labels of the instances xq and xk respectively [12].

In this section we analyze the data difficulty of the HSV problem, by using
the IH measure, using the exploitation set to characterize the problem. This
analysis considers different types of signatures (genuine signatures, random and
skilled forgeries) and the evaluation of different values of the neighborhood size
K in the kDN measure (K in the interval [3,51]).

The main characteristics of the dichotomy transformation (see Figs. 2-3) are:
(i) signatures that are close to each other in the feature space will be close to
the origin in the dissimilarity space and (ii) the further away two signatures
are from each other in the feature space, the farther from the origin will be the
transformed vector [3].

In the original feature space [7], genuine signatures from the writers form
dense clusters; the skilled forgeries can present two different behaviors: (i) for
some writers skilled forgeries are very separate from the genuine signatures, and
(ii) in other cases they are closer to the genuine signatures.

Considering this, it is expected that the dissimilarity space generated by
the dichotomy transformation presents the following characteristics: (i) positive
samples will be close to the origin, forming also a dense cluster in the dissimilarity
space (DS), (ii) skilled forgeries with a larger separation will generate negative
samples farther away from the origin in the DS, (iii) skilled forgeries close to the
genuine signatures will generate negative samples closer to the origin in the DS.
As random forgeries are genuine samples from other writers and different writers
occupy different regions of the feature space, negative samples from random
forgeries will be located far from the DS origin.
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Fig. 5. Scenario (1): Instance hardness considering the all selected data.

Figures 5, 6 and 7 depict, respectively, the histograms of the instance hardness
considering the scenarios: (1) all the data; (2) positive samples and negative
samples (only from random forgeries); (3) positive samples and negative samples
(only from skilled forgeries). With the scenarios (2) and (3), we can see the
relationship between each type of negative samples and the positive data.

As depicted in Figure 5, the vast majority of positive samples have IH = 0.0
and almost all them have a IH < 0.3. As we are considering the kDN measure, a
higher values of K result in a more embracing investigation and lower K values
represent a more compact investigation of space. To ilustrate this, for IH < 0.3
and K = 7, at least 5 of the 7 neighbors of the positive samples are from the
positive class itself. On the other hand, given K = 51, the IH < 0.3 represents
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Fig. 6. Scenario (2): IH considering the positive samples and negative samples (only
random forgeries).

Fig. 7. Scenario (3): IH considering the positive samples and negative samples (only
skilled forgeries).

that at least 36 neighbors of the positive samples are from the positive class itself.
So, regardless of the neighborhood size, in the dissimilarity space the majority of
neighbors of the positive samples are from the positive class. So, positive samples
form a dense cluster close to the origin in the dissimilarity space.

For the negative samples, the IH values are spread along the histogram. Thus,
negative samples are expected to be in a sparse region of the dissimilarity space
with some them in a region closer to the dense positive region of the space, as
some samples have IH = 1.0 (i.e. all the neighborhood of the negative sample
belongs to the positive class).

Still from Figure 5, as a result of the positive samples density and the negative
samples sparsity in the dissimilarity space, higher neighborhood sizes (K) results
in an increase of negative samples on the right side of the histogram (i.e. some
negative samples are in a region closer to the dense positive region of the space
than to the negative samples themselves).

When considering the positive samples and the negative samples (only random
forgeries), we can observe that (Figure 6): almost all the positive samples are in
the IH = 0.0 bin, for this to happen there is no class overlap between the class
distributions in the dissimilarity space.
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Combining Figs. 5 and 7, we can see that almost all the positive samples with
IH 6= 0.0 from Fig. 5 are derived from skilled forgeries. Thus, there should be
class overlapping in the dissimilarity space. This behavior is expected, since the
skilled forgeries are more similar to the genuine ones when compared to random
forgeries. Still from Fig. 7, as the negative samples include some with higher IH,
the overlap of the classes occurs in the positive region of the dissimilarity space.

Thus, in general, positive samples are located in a dense cluster close to
the origin and the negative samples are scattered throughout the dissimilarity
space. Also, the clusters are disjoint (based on the concentration of the IH with
low values) with a small area of overlap (because of the high similarity between
genuine signatures and few skilled forgerie). Considering that hard to classify
samples are in the border region the use of a condensation PS technique, such as
the CNN, was shown to produce good experimental results because it maintains
the samples in the decision boundaries [5].

4 Conclusion

In this work we presented the Handwritten Signature Verification problem as
having difficult data and tried to understand its behavior in the dissimilarity
space generated from the dichotomy transformation used by a writer-independent
approach. The evaluation was based on the instance hardness measure.

As presented, the WI dichotomy transformation is able to handle with some
of the HSV problem difficulties, such as the imbalanced class distributions,
high number of classes, high-dimensional feature space and small number of
learning samples, when compared to the writer-dependent approach. Also, the
WI approach presented good adaptability to the data, since after training, the
classifier can verify signatures regardless of the writer has been used during the
training, depending only on the input reference signature.

The reported IH analysis showed that, in general, in the transformed space
the positive samples are located in a dense cluster close to the origin and the
negative samples are scattered throughout the dissimilarity space generated by
the dichotomy transformation. This better understanding of the transformed
space, allowed us to make a better use of the samples by using a prototype
selection technique, the Condensed Nearest Neighbors (CNN), that is more suited
to the worked context.

The experimental results showed that, the dichotomy transformation is able to
increase the number of samples in the offline WI-HSV scenario, yet many of them
are redundant. Thus, by using prototype selection it is possible to speed up the
classifier training and still achieve a similar or better classification performance
than by using all the training samples. Even being a classic and simple technique,
the Condensed Nearest Neighbors [9] applied as systematic approach was able to
select fewer prototypes and still maintain performance when compared to both
the SVM trained with all the original training set and the random subsampling
approach.
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Future works may include the study of feature selection in the dissimilarity
space and the adaptation of the WI classifier over new incoming data.
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