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AUTOMATIC RECOGNITION OF HANDWRITTEN NUMERICAL
STRINGS

Luiz Eduardo Soares Oliveira

ABSTRACT

Automatic reading of numerical �elds has been attempted in several application
areas such as bank cheque processing, postal code recognition, and form processing.
Such applications have been very popular in handwriting recognition research, due
to the availability of relatively inexpensive CPU power, and the possibility to reduce
considerably the manual e�ort involved in these tasks.

In this thesis, a modular system to recognize handwritten numerical strings is pro-
posed. It uses a segmentation-based recognition approach and a Recognition and
Veri�cation strategy. The approach combines the outputs from di�erent levels such
as segmentation, recognition and post-processing in a probabilistic model. A new
veri�cation scheme which contains two veri�ers to deal with the problems of over-
segmentation and under-segmentation is presented. A new feature set is also intro-
duced to feed the over-segmentation veri�er. A post-processor based on a deter-
ministic automaton is used, and the global decision module makes an accept/reject
decision. Finally, experimental results on two databases are presented: numerical
amounts on Brazilian bank cheques and NIST SD19. The latter aims at validating
the concept of modular system and showing the robustness of the system using a
well-known database.

Thereafter, we discuss some di�erent strategies we have investigated in order to
optimize and improve the performance and reliability of such a system. Our e�orts
are geared towards the veri�cation, feature selection, and ensemble of classi�ers.
Comprehensive experiments carried out on both isolated digits and strings of digits
emphasize the challenges in improving the performance of handwritten numerical
string recognition systems.
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SOMMAIRE

La lecture automatique de champs numériques a été envisagée dans plusieurs do-
maines tels que le traitement de chèques bancaires, la reconnaissance de codes
postaux, et le traitement de formulaires qui constituent un large éventail des prob-
lèmes implicites à la reconnaissance de l'écriture manuscrite. Par la suite, la recherche
autour de cette problématique s'est rapidement développée dès lors que la puissance
de calcul et les ressources de mémoire sont devenus disponibles à moindre frais.

Dans le cadre de cette thèse, nous présentons un système modulaire de reconnaissance
de chaînes numériques manuscrites. Celui-ci utilise une approche �segmentation-
reconnaissance� pour la segmentation, une stratégie de reconnaissance et une stratégie
de post-traitement pour la véri�cation. Le système combine les sorties issues des
modules de segmentation, de reconnaissance et de véri�cation au sein d'un même
modèle probabiliste. Un nouveau schéma de véri�cation que composent deux véri�-
cateurs traitant respectivement les cas de sur-segmentation et de sous-segmentation
est présenté. Dans le but de véri�er les cas de sur-segmentation, un nouveau jeu
de caractéristiques est considéré. L'étape de post-traitement utilisant un automate
déterministe en association avec le module de décision globale permet le rejet ou
l'acceptation de l'image traitée. En�n, des résultats très signi�catifs ont été obtenus
sur des images de montants numériques de chèques Bresiliens. A�n de montrer la
robustesse et la moularité du système, ce dernier est testé sur la base de données de
chi�res manuscrits NIST SD19.

Plus loin, nous discutons di�érentes stratégies que nous avons explorées dans le
but d'améliorer la performance et la �abilité du sytème. Nos e�orts portent par-
ticulièrement sur la véri�cation, la sélection de caractéristiques et les ensembles de
classi�eurs. L'analyse des résultats d'expériences obtenus aussi bien sur les chi�res
manuscrits isolés et sur les chaînes de chi�res, met en relief la di�culté inhérente au
problème de reconnaissance de chaînes numériques manuscrites.
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RÉSUMÉ

L'objet de notre travail est la reconnaissance de chaînes numériques manuscrites
rédigées sans contraintes. Des chi�res manuscrits écrits sans contraintes ne sont pas
transcrits soigneusement, ni écrits dans des emplacements isolés et ne respectent pas
forcément une fonte spéci�que. D'où le dé�s de reconnaître des images de nombres ou
de montants que l'on peut trouver dans la vie réelle telles que des images de montants
numériques de chèques ou des images de valeurs numériques dans les formulaires.
Parmi les di�cultés inhérentes à la reconnaissance de chaînes de chi�res �gurent : le
bruit, les chi�res fragmentés, les chi�res qui se recouvrent, les chi�res non isolés et la
longueur inconnue des chaînes de chi�res. Aussi, la lecture des montants numériques
inscrits sur les chèques peut compliquer davantage la tâche de reconnaissance en
présentant des cas de classes non numériques, l'ambiguité entre les caractères non
numériques et les chi�res, et la présence de ligatures éventuelles qui lient les chi�res
entre eux.

Ainsi, la di�culté de notre application dépend tout aussi bien de la reconnaissance
de caractères individuels qu'à la séparation des caractères a�n de les isoler les uns
des autres dans la chaîne, lequel processus est appelé segmentation. Deux approches
di�érentes de reconnaissance sont bien connues dans la littérature : l'approche de
�segmentation puis reconnaissance� et l'approche �segmentation guidée par la recon-
naissance�`(ou segmentation-reconnaissance). La première fournit une seule hypotèse
de séquence, ou chaque composante de la séquence devant contenir un seul carac-
tère est soumise au module de reconnaissance. La seconde quant à elle, est basée
sur un formalisme probabiliste qui exprime la meilleure combinaison des scores de
segmentation et de reconnaissance de l'image présentée à l'entrée su système. Bien
que cette approche soit plus �able que la première, son inconvénient majeure réside
dans la complexité de calcul nécessaire à l'évaluation de toutes les hypothèses de
segmentation possibles. En outre, le module de reconnaissance doit distinguer les
di�érentes con�gurations possibles telles que : un chi�re fragmenté, un caractère
isolé ou bien des caractères connectés. Dans cette stratégie, la segmentation peut
être explicite lorsqu'elle utilise des règles de segmentation ou bien implicite lorsque
chaque colonne de pixels est un point de segmentation potentiel.

Des travaux ultérieurs ont montré que l'approche �segmentation-reconnaissance� util-
isant une segmentation explicite est plus performante que les autres. Toutefois, la
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précision du système reste sujet à la �abilité de l'algorithme de segmentation (heuris-
tiques) et à la capacité du module de reconnaissance à distinguer correctement un
caractère segmenté d'un fragment de caractère (sur-segmentation) ou d'une chaîne
de caractères (sous-segmentation). A la lumière de tout cela, le principal objectif de
notre recherche est de développer un système de reconnaissance modulaire pour la
reconnaissance de chaînes de chi�res manuscrits. Ce système intègre une approche
de �segmentation-reconnaissance� où une segmentation explicite détermine les ré-
gions de découpage et fournit une représentation spatiale de la solution. Comme
argumenté plus haut, notre système doit être en mesure de distinguer et de dé-
tecter les aléas éventuels que peuvent causer les phénomènes de �sur-segmentation�
et de �sous-segmentation� de la chaîne, pendant la reconnaissance. Dans cette op-
tique, nous avons proposé une stratégie basée sur la reconnaissance et la véri�cation.
Ne considérant aucune hypothèse à priori sur l'entrée, le module de reconnaissance
utilise un classi�eur ad-hoc pour produire une hypothèse que le véri�cateur peut soit
entériner ou rejeter. Un second volet de notre recherche concerne l'optimisation du
système. Pour ce faire, un e�ort particulier est porté sur la véri�cation, la sélec-
tion de caractéristiques et les ensembles de classi�eurs. Les résultats d'expériences
réalisées sur des chi�res isolés et sur des chaînes de chi�res, mettent en relief la di�-
culté associée à l'amélioration de la performance d'un tel système. Les contributions
originales de ce travail sont résumées comme suit :

• Un algorithme de segmentation explicite basé sur la relation de complémentar-
ité de di�érents jeux de caractéristiques structurelles, à savoir, le contour, le
pro�l et le squelette.

• Nous avons démontré comment la véri�cation peut améliorer la reconnaissance
et la �abilité du système en détectant les phénomènes de sous-segmentation et
de sur-segmentation. La stratégie proposée est basée sur deux véri�cateurs. Le
premier gère les cas de sur-segmentation, tandis que le deuxième gère les cas
de sous-segmentation. Un nouveau jeu de caractéristiques qui utilise l'analyse
de concavités multi-niveau et l'information contextuelle a été développé pour
la détection des cas de sur-segmentation dans le premier véri�cateur. Nous
mettons à l'avant aussi les concepts de modularité, de niveaux de véri�cation,
et montrons comment un tel système peut être adapté à des applications dif-
férentes.

• À la lumière de la performance des véri�cateurs discutés ci-haut, nous avons
élaboré une autre stratégie de véri�cation, que nous avons appelé �véri�cateur
haut-niveau�, qui vise à améliorer la �abilité du sysème. Pour ce faire, deux
stratégies ont été présentées : véri�cateur un-A-un et véri�cateur absolu. S'en
suit une analyse d'erreurs qui vise à identi�er sous quelles conditions expéri-
mentales le véri�cateur haut niveau est le plus pertinent.
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• Nous avons introduit une méthodologie de sélection de caractéristiques qui op-
timise une fonction objective multi-critère avec un algorithme génétique qui
produit un ensemble de solutions alternatives et une méthode de validation
croisée pour indiquer le meilleur compromis précision/complexité. Nous dé-
montrons l'importance de la validation croisée lorsqu'un ensemble de solutions
alternatives est considéré. Le résultat de classi�cation est fourni par un réseau
de neurones en conjonction avec une analyse de sensibilité.

• Nous proposons dans un autre chapitre, une stratégie de génération d'un en-
semble de classi�eurs basée sur la sélection de caractéristiques. Un tel schéma
a comme entrée les solutions di�érentes que génère l'algorithme de sélection de
caractéristiques. La procédure exploite le fait que des sous-ensembles de carac-
téristiques di�érents, issus du même jeu de caractéristiques, peuvent montrer
un pouvoir discriminant appréciable en les combinant et ensuite améliorer la
performance du système. A�n de trouver les meilleurs classifeurs de l'ensemble,
une recherche de deuxième niveau est appliquée.

Nous présentons les résultats d'expérience sur des bases de données de montants
numériques et de chi�res manuscrits (NIST SD19) pour démontrer l'apport de la
modularité du système de reconnaissance et l'importance de la véri�cation sur la
performance de celui-ci. Le système montre des taux de reconnaissance élevés à un
seuil de rejet nul. Il exhibe en�n un compromis erreur/rejet très encourageant. Les
résultats de notre système se comparent favorablement aux autres méthodes plubliées
récemment dans la littérature.
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INTRODUCTION

Handwriting consists of arti�cial graphical marks on a surface and its purposes are
to communicate something and also to expand the human memory. It is a skill
closely related to the human personality, which explains its great variability. In
spite of all this variability, by the time they are �ve years old, most of the children
can recognize digits and letters. Small characters, large characters, or rotated, all
are easily recognized by the young. The characters may be written on a cluttered
background, on crumpled paper or may even be partially occluded. We take this
ability for granted until we face the challenge of teaching a machine how to do the
same. After 50 years of research, design of a general handwriting recognition machine
remains an elusive goal.

At the beginning of a new millennium, technology has brought handwriting to a
crossroads. Nowadays there are several ways to expand human memory and to
facilitate communication. In the light of this, one may ask: Will handwriting be
threatened with extinction? We could say no, and the reason that handwriting
persists in the age of the digital computer is the convenience of paper and pen as
compared to keyboards for numerous day-to-day situations. For example, students
in a classroom are still not typing on a notebook computer. They store language,
equations, and graphs with a pen on a paper. This typical paradigm has led to the
concept of pen computing, where the keyboard is an expensive and nonergonomic
component to be replaced by a pentip position sensitive surface superimposed on a
graphic display that generates electronic ink. This led us to two di�erent approaches:
o�-line and on-line handwriting. In the former the data are converted to digital
format by scanning the writing on paper while in the latter the data are acquired by
writing with a special pen on an electronic surface.
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On-line systems for handwriting recognition are available in hand-held computers
such as personal digital assistant (PDA). The performance of PDA is acceptable
for processing hand-printed symbols. O�-line systems are less accurate than on-
line systems because the temporal information is lost. However, they may have a
signi�cant economic impact on specialized domains such as interpreting handwritten
postal address on envelopes, and reading numerical amounts on forms. The latter is
the subject of this thesis.

A considerable number of paper-based documents are processed daily by computers
all over the world in order to handle, retrieve, and store information. The great bulk
of them are still processed manually by human operators, the most common and
labor-consuming operation being document amount reading and typing. A common
way to automate this process is to replace the human operator with an o�-line
handwriting recognition system which is able to do the operator's job. Such a system
gets access to both theoretical and practical achievements of di�erent �elds such as
pattern recognition, document analysis, machine learning, and arti�cial intelligence.
Over the past years, several techniques and methodologies have been proposed in
order to build faster and more reliable systems. However, notwithstanding all e�orts
made in this �eld, there is still a considerable gap between human and machine
performances. Thus, the big challenge in this �eld is to make computers approach
human performance.

Problem Statement

The focus of our work is the recognition of unconstrained handwritten numerical
strings. Unconstrained handwritten numerals are handwritten numerals that are
not written in separate boxes, nor written neatly, nor written with a speci�c type
of pen. Thus, the challenge is to recognize numbers written by people in real-life
situations such as numerical amounts on cheques and numerical values on forms.
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Some possible di�culties contributing to the unsatisfactory performance of many
methods for recognizing handwritten numerical strings are: noise, broken digits,
overlapping digits, touching digits, and unknown length of the string. Figure 1
depicts some of these problems.

(a) (b) (c)

Figure 1 Examples of di�cult problems when recognizing strings of digits: (a)
noise, (b) broken digits, and (c) overlapping and touching digits.

When dealing with some speci�c applications such as numerical amounts on bank
cheques, other concerns should be added to those discussed above, e.g., non-numerical
classes, possibility of expressing the same amount through di�erent variants, ambi-
guity among non-numerical characters and digits, and ligatures between digits and
non-numerical characters. Figure 2 exempli�es some of these di�culties.

(a) (b)

Figure 2 Examples of numerical amounts: (a) non-numerical at the beginning and
the end, and (b) digits connected to non-numerical classes.

On top of all this, we still have to deal with the intrinsic ambiguity of handwritten
digits, which may vary depending on the database being considered. Figure 3 exhibits
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such an ambiguity for the two databases used in this work. It can be observed from
this Figure that the samples extracted from the numerical amounts of Brazilian bank
cheques have more variability when compared to those extracted from NIST.

(a) (b)

Figure 3 Handwritten digits extracted from: (a) NIST SD19 and (b) numerical
amounts of Brazilian bank cheques.

Summarizing, the di�culties of handwriting recognition do not lie only in recogniz-
ing individual characters, but also to separate out characters from their neighbors
within the string, a process known as segmentation. The literature shows us two
di�erent approaches for digit string recognition: segmentation-then-recognition and
segmentation-based recognition. In the �rst approach, the segmentation module
provides a single sequence hypothesis where each sub-sequence should contain an
isolated character, which is submitted to the recognizer. The second strategy is
based on a probabilistic assumption where the �nal decision must express the best
segmentation-recognition score of the input image. Although this latter approach
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gives a better reliability than the previous one, the main drawback lies in the com-
putational e�ort needed to compare all the hypotheses generated. Moreover, the
recognition module has to discriminate various con�gurations such as fragments,
isolated characters and connected characters. In this strategy, segmentation can be
explicit when based on cut rules [22, 122] or implicit when each pixel column is a
potential cut location [14, 95].

The literature has shown that segmentation-based recognition systems using explicit
segmentation (sometimes also called heuristic over-segmentation [90]) have yielded
better results than other approaches. However, in such an approach, the accuracy
of the system depends upon the quality of the cuts generated by the segmentation
algorithm (heuristics), and on the ability of the recognizer to distinguish correctly
segmented characters from pieces of characters (over-segmentation) and multiple
characters (under-segmentation). In our work we address the foregoing problem by
using a strategy based on Recognition and Veri�cation.

Goals of the Research

The primary goal of our research is to develop modular recognition system for hand-
written numerical strings. This system takes a segmentation-based recognition ap-
proach where an explicit segmentation algorithm determines the cut regions and pro-
vides a multiple spatial representation. As stated before, such a system has to solve
a crucial problem: distinguishing, at the recognition stage, a sequence corresponding
to an inter-character segmentation from another relative to an intra-character seg-
mentation. In order to deal with this problem we have proposed a strategy based on
Recognition and Veri�cation where the recognition function takes into account only
a general-purpose recognizer while the veri�ers evaluate the result produced by the
recognizer.
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A second aspect of our research lies in the optimization of the handwriting recognition
system. To accomplish this, our e�orts are geared towards the veri�cation, feature
selection, and ensemble of classi�ers. Comprehensive experiments carried out on
both isolated digits and strings of digits emphasize the di�culties in improving the
performance of handwritten numerical string recognition systems.

Contributions

The original contributions of this work can be summarized as follows:

• An explicit segmentation algorithm which is based on the relationship of com-
plementary sets of structural features, namely, contour, pro�le, and skeletal
points. In [122] such an algorithm was introduced. Some results using com-
bination of di�erent feature sets and combination of classi�ers was presented
in [121]. Finally, we developed a strategy based on graphs to manage and
generate all segmentation hypotheses [120].

• We demonstrated how the veri�cation can improve the recognition and reliabil-
ity rates of the system by detecting over- and under-segmentation. Firstly, we
have experimented a new scheme of veri�cation based only on one veri�er [124].
Afterwards, we realized that a strategy based on two veri�ers would be more
reliable. The �rst veri�er tackles over-segmentation while the second one deals
with under-segmentation. A new feature set, which takes into account multi-
level concavity analysis and contextual information, was developed to feed the
over-segmentation veri�er. We present also the concept of modular recognition
system, levels of veri�cation, and show how such a recognition system can cope
with di�erent applications. In [125] we present a complete description of the
Recognition and Veri�cation strategy.
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• In light of the success obtained by the veri�ers discussed above, which we
have called low-level veri�cation, we elaborate another strategy of veri�cation,
called high-level veri�er, to improve the reliability of the system. Two di�erent
strategies were developed: absolute and one-to-one veri�ers. A thorough error
analysis is also presented in order to identify the conditions under which high-
level veri�cation is more appropriate. This work appeared in [123] and as
extended version in [128].

• The issue of feature selection was �rst addressed in [119]. In this paper we dis-
cussed di�erent strategies of genetic algorithms such as simple and iterative
generic algorithm to perform feature selection for handwriting recognition.
Thereafter, we realized that the use of a multi-objective genetic algorithms
could be much more interesting since it can provide a set of di�erent solutions
(subsets of features) rather than just one solution. So we have introduced a
methodology [126], that considers an e�cient multi-objective genetic algorithm
to generate a set of alternative solutions and a cross-validation method to in-
dicate the best accuracy/complexity trade-o�. We demonstrate that the cross-
validation is very important when working with a set of alternative solutions.
The classi�cation accuracy is supplied by a neural network in conjunction with
the sensitivity analysis. An extended version of this work will appear in [129].

• A strategy for generating an ensemble of classi�ers based on feature selection
was proposed in [127]. Such a scheme receives as input the di�erent solutions
provided by the feature selection algorithm. The idea is to take advantage of
the fact that the feature selection algorithm yields di�erent subsets of features
with a high discriminant power, which use di�erent parts of the same feature
set. In order to �nd the best classi�ers to compose the ensemble, a second level
of search is performed.
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• As marginal contributions, we have demonstrated the reliability and appli-
cability of our system by using it to recognize strings of digits in di�erent
applications such as day and year on handwritten dates [113]. We also built
a database of about 2,000 images of Brazilian bank cheques, which we have
used to evaluate the proposed system. The speci�cations of this database are
reported in [39] and Appendix 1.

Outline of the Thesis

This document consists of eight chapters (including the introduction and the con-
clusion) and three appendixes. The current chapter outlined the problem we are
working with, the goals, and the main contributions of the thesis. A review of the
state of the art for o�-line handwriting recognition is given in Chapter 1.

In Chapter 2, we present a brief overview of the system in order to be able to
introduce all de�nitions related to the system. Firstly, the probabilistic model that
the system is based on is introduced. Then, the classi�ers, training method, and
decision rules are de�ned. Finally, the de�nitions about levels of veri�cation and
modularity are presented.

In Chapter 3 we describe the two �rst modules of the system, namely component
detection and segmentation. The former performs a very simple smoothing operation
before detecting all the components in the image. Then, such components are used as
input to the segmentation module, which produces a list of segmentation hypotheses
that will be evaluated by the recognizer.

The Recognition and Veri�cation strategy is addressed in Chapter 4. In this chapter
all modules de�ned in Chapter 2 are described in detail. In addition, we present the
feature set used by each classi�er and also describe how the low-level veri�ers and
general-purpose recognizer interact with each other. In order to support the ideas
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proposed in this thesis, Chapter 5 presents a series of comprehensive experiments,
which are carried out on two di�erent databases: numerical amounts and NIST
SD19.

Chapter 6 reports our e�orts towards the performance and reliability of the general-
purpose recognizer. In this chapter we discuss three well known and established
techniques we have investigated: high-level veri�cation, feature selection, and en-
semble of classi�ers. Finally, the �nal chapter concludes this thesis and shows an
outlook on the future works as well.

We have assumed that the reader is familiar with the theory of pattern recognition,
neural networks, and genetic algorithms. For this reason, we do not devote much
attention to such subjects. For those who do not feel comfortable in these �elds we
would suggest the reading of the following references: [33] for pattern recognition,
[9, 38] for neural networks, [48, 65] for genetic algorithms, and [30] for multi-objective
genetic algorithms.



CHAPTER 1

STATE OF THE ART

In this chapter we present the state of the art of handwritten isolated digit recog-
nition and handwritten numerical string recognition, which are the two main �elds
related to our research. First of all we present a very brief historic about character
recognition, then we address the problem of isolated digits. Thereafter, we discuss
the problem of handwritten numerical string recognition and �nally some applica-
tions of handwriting recognition.

1.1 Brief History

An interesting view about the evolution of the character recognition systems is pre-
sented in [4]. The authors argue that such systems have been evolved in three
ages: early ages, developments, and advancements. In the early ages (1900-1980),
the �rst character recognizers appeared in the middle of the 40s with the develop-
ment of digital computers. At that time, the works were concentrated either upon
machine-printed text or upon a small set of well-distinguished handwritten text or
symbols. Successful, but constrained algorithms have been implemented mostly for
Latin characters and numerals [149]. The commercial character recognizers were
available in the 1950s, when electronic tables capturing the x-y coordinates data of
pen-tip movement was �rst introduced [153].

The developments age took place from 1980 to 1990. With the explosion of informa-
tion technology and consequently easier access to personal computers, the previously
methodologies found a very fertile environment for rapid growth in many application
areas. Structural approaches [145] were initiated in many systems in addition to the
statistical methods [70]. The character recognition research was focused basically on
the shape recognition techniques without using any semantic information. This led
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to an upper limit in the recognition rate, which was not su�cient in many practical
applications. The state of the art of this period can be found in [112] and [153] for
o�-line and on-line cases respectively.

The real progress in character recognition was achieved in the advancements age
(after 1990). In the early 1990s, image processing and pattern recognition were e�-
ciently combined with arti�cial intelligence techniques. E�cient tools such as neural
networks, support vector machines, hidden Markov models, fuzzy set reasoning, and
natural language combined with more powerful computers and more accurate elec-
tronic equipments have provided quite satisfactory results for restricted applications
[134]. However, there is still a long way to go in order to reach the ultimate goal
of machine simulation of �uent human reading, especially for unconstrained o�-line
handwriting.

1.2 Handwritten Isolated Digit Recognition

Many researchers have tried to improve the performance of recognition systems by
investigating features, classi�cation methods, and di�erent system architectures such
as multi-experts and veri�cation modules.

Selection of a feature extraction method is probably the single most important factor
in achieving high recognition performance. For this reason, such a subject has gained
considerable attention of the scienti�c community. A good survey about feature
extraction can be found in [156]. The literature of handwritten digit recognition
shows us basically three classes of features.

The �rst class are the gray-level or binary values of all the pixels in an image,
usually represented by a N -dimensional vector, where N is the number of pixels in
the image. Since no abstraction is applied, all the variances among the patterns are
to be handled by a classi�cation algorithm. One fast evolving approach is using pixel
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features as direct input to neural networks [59, 90]. The reason of success can be
explained by the fact that neural networks also act as a feature extractor during the
learning.

Features of the second class are the structural features of the image, which are
typically perceptual entities of the character such as bends, end points, intersections,
loops, measures of concavity, distance information, and directional features [67, 93,
116, 118, 151, 169]. The last class of features are the statistical features. They are
results of global transformations on an image. Typical mathematical transformations
include moments [6, 68], Fourier descriptors [144], and wavelet transforms [27, 133].

In order to get more reliable systems, many researchers have turned towards the
combination of statistical and structural features in a same structure of classi�cation
(e.g., in a one-shot classi�er). Cai and Liu in [18] present an approach that integrates
both statistical and structural information for the recognition of unconstrained hand-
written numerals. Heutte et al [60] propose a combination of seven di�erent families
of features to feed a linear discrimination based classi�er. The performances of these
systems are reported in Table I.

Alongside these investigations of feature extraction methods, several works have ad-
dressed classi�cation methods. Di�erent classi�ers have been used for handwritten
digit recognition, such as (i) template matching, (ii) statistical techniques, (iii) struc-
tural techniques, and (iv) neural networks. Template matching operations determine
the degree of similarity between two vectors (groups of pixels, shapes, curvatures,
etc) in the feature space. Matching techniques can be grouped into two classes:
direct matching [43], deformable templates and elastic matching [71].

Statistical techniques is concerned with statistical decision functions and a set of op-
timality criteria, which determine the probability of the observed pattern belonging
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to a certain class. Several popular handwriting recognition approaches belong to this
domain, as suggested in [70]:

• The k-Nearest-Neighbor (k-NN) rule is a popular non-parametric recognition
method, where the posteriori probability is estimated from the frequency of
nearest neighbors of the unknown pattern. Good recognition results for hand-
writing recognition have been reported by using this approach [53]. The prob-
lem with this method is the high computational cost when the classi�cation is
conducted. To surpass such a problem some researchers have been proposed
faster k-NNs methods [108].

• The Bayesian classi�er assigns a pattern to a class with the maximum posteriori
probability. Class prototypes are used in the training stage to estimate the
class-conditional probability density function for a feature vector [24, 33, 114].

• The polynomial discriminant classi�er assigns a pattern to a class with the
maximum discriminant value which is computed by a polynomial in the com-
ponents of a feature vector. The class models are implicitly represented by the
coe�cients in the polynomial [141].

• Hidden Markov Model (HMM) is a statistical framework for modelling sequen-
tial input by state transitions. It has been widely used in speech recogni-
tion and its applications to handwritten digit recognition have been growing
[14, 18, 135].

• Fuzzy set reasoning is a technique that employs fuzzy set elements to describe
the similarities between the features of the characters. The literature shows
di�erent approaches such as fuzzy graphs [1], fuzzy rules [44], fuzzy logic [56],
and linguistic fuzzy [87].
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• One of the most interesting recent developments in classi�er design was the
introduction of the support vector machines (SVM) by Vapnik [157]. In the
past few years, SVM has received increasing attention in the communities of
machine learning and pattern recognition due to its excellent generalization
performance. It is primarily a two-class classi�er, but multiple SVMs can be
combined to form a classi�cation system for multi-class classi�cation. Some
SVM classi�cation systems have been developed for handwritten digit recog-
nition in the recent years, and some promising results have been reported
[5, 17, 155].

In structural handwriting recognition the characters are represented as unions of
structural primitives. It is assumed that the character primitives extracted from
handwriting are quanti�able, and one can �nd the relations among them. Basically,
structural methods can be divided into two classes: grammatical methods [145] and
graphical methods [62].

In the past decade, there has been a tremendous increase of interest in neural net-
works as a possible solution to the problem of recognizing handwritten numerals. A
neural network is de�ned as a computing structure consisting of a massively parallel
interconnection of adaptative �neural� processors. The main advantages of neural
networks are (i) the ability to be trained automatically from examples, (ii) good
performance with noisy data, (iii) possible parallel implementation, and (iv) e�cient
tools for learning large databases. The most widely studied and used neural network
is the Multi-Layer Perceptron (MLP) [9]. Such an architecture trained with the
gradient descent applied to a sum-of-square error function [91] is among the most
popular and versatile forms of neural network classi�ers and is also among the most
frequently used traditional classi�ers form handwriting recognition. See [164] for
a review. Other architectures include Convolutional Networks [90], Self-Organized
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Maps [163], Radial Basis Function [9], Space Displacement Neural Network [106],
Time Delay Neural Networks [96, 3], and Quantum Neural Networks [165].

In the recent years, combination of classi�ers has been attracted theoretical and
practical attention. In the long run, the combined decision is supposed to be better
(more reliable) than the classi�cation decision of the best individual classi�er. Such
an idea appears under a variety of names in the literature: classi�ers fusion [46],
classi�ers combination [79, 159], mixture of experts [69], committees [9], classi�ers
ensembles [81, 57], etc.

The literature on theoretical classi�er combination has grown rapidly [2, 79, 84, 92,
154, 159]. The papers advocate di�erent fusion strategies, demonstrate the ben-
e�ts of classi�er, and provide a theoretical underpinning of the various strategies
commonly used in multiple expert fusion. Some interesting results of combination
scheme are also reported in practical applications. Suen et al [151] combined four
structural methods using variants of majority vote. High performance was reported
on CENPARMI database. Xu et al [159] used the same four classi�ers and results
are provided using Dempster-Shafter and Bayesian formalism. Lam and Suen [86]
applied weighted voting to handwritten digit recognition using seven classi�ers. Kit-
tler et al [79] applied several classi�er combination strategies such as product rule,
sum rule, min rule, max rule, median rule, and majority vote to recognize handwrit-
ten numerals. Gorski [50] demonstrated that for large databases, neural networks
provide compelling results as a classi�er integrator.

Another strategy that can increase the recognition rate in a relatively easy way with
a small additional cost is through the use of veri�cation. Such a scheme consists of
re�ning the top few candidates in order to enhance the recognition rate economically.
Such a kind of scheme has been successfully applied to handwriting recognition in
[14, 152, 167].
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Table I compiles some of the results reported in the literature from 1996 until nowa-
days. It is important to point out that the recognition, rejection, and error rates are
not directly comparable, since these results are based on di�erent databases. The
symbol �-� means that the rate was not reported by the author. For performance of
the systems published before 1996, please see [94].

Table I

Compilation of some of the results reported in the literature (Rec: Recognition
rate, Rej: Rejection Rate, and Rel: Reliability Rate).

Author Year Rec. Error Rej. Rel. Database No. of
(%) (%) (%) (%) used Images

Lee [94] 1996 97.1 2.9 - - CENPARMI 4,000
Gader and Khabou [45] 1996 96.3 1.0 2.7 98.9 CENPARMI 10,000
Ha and Bunke [54] 1997 99.5 0.5 - - NIST SD3 173,124
Cheng and Yan [23] 1998 98.5 0.9 0.6 99.1 NIST 5,278
Hu and Yan [67] 1998 96.8 0.5 2.7 99.4 NIST 10,852
Heutte et al [60] 1998 94.8 0.5 4.7 99.5 NIST SD3 53,324
Oh et al [117] 1999 97.8 2.2 - - CENPARMI 2,000
Liu and Nakagawa [100] 1999 98.4 1.6 - - CENPARMI 2,000
Park et al [132] 2000 98.2 1.8 - - NIST SD3 53,301
Cai and Liu [18] 2001 98.4 1.6 - - CEDAR 2,213
Zhou et al [166] 2001 90.0 1.0 9.0 98.9 CENPARMI 2,000
Zhang et al [162] 2001 97.8 2.2 - - NIST 10,000
Lu et al [103] 2002 96.4 3.6 - - NIST SD3 10,426
Mayraz and Hinton [107] 2002 98.3 1.7 - - MNIST 10,000

1.3 Handwritten Numerical String Recognition

Handwritten numerical string recognition has been a topic of intensive research in
recent years due to its large number of potential applications. The recognition of
numerical strings di�ers from that of isolated digits because it requires the seg-
mentation of a string into separate entities representing individuals digits. It is also
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di�erent from the problem of recognizing handwritten words form a dictionary in the
sense that almost no contextual information is available, i.e., any digit can follow
any other one. Segmentation of numerical strings is generally a di�cult task because
individual numerals in a string can overlap or touch each other, or a numeral can be
broken into several parts.

Strategies for handwritten numerical string recognition can be divided into segmenta-
tion-then-recognition [143, 145] and segmentation-based recognition [55, 105]. In the
�rst approach, the segmentation module provides a single sequence hypothesis where
each sub-sequence should contain an isolated character, which is submitted to the
recognizer. This technique shows its limits rapidly when the correct segmentation
does not �t with the pre-de�ned rules of the segmenter. Very often, contextual
information is used in the segmentation process to improve the robustness of the
system.

The second strategy is based on a probabilistic assumption where the �nal decision
must express the best segmentation-recognition score of the input image. Usually, the
system yields a list of hypotheses from the segmentation module and each hypothesis
is then evaluated by the recognition. Finally, the list is post-processed taking into
account the contextual information. Although this approach gives a better reliability
than the previous one, the main drawback lies in the computational e�ort needed
to compare all the hypotheses generated. Moreover, the recognition module has
to discriminate various con�gurations such as fragments, isolated characters and
connected characters. In this strategy, segmentation can be explicit when based
on cut rules [96, 22] or implicit when each pixel column is a potential cut location
[14, 95]. A good review about segmentation can be found in [20].

Indeed, handwritten numerical string recognition is present in almost every applica-
tion involving handwriting recognition, for instance, postal address [89, 77], cheque
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processing [96, 74, 80], and form reading [14, 55]. Such applications have been very
popular in handwriting recognition research, due to the availability of relatively inex-
pensive CPU power, and the possibility to reduce considerably the manual e�ort in-
volved in these tasks. In the following subsections we discuss two applications where
handwritten numerical string recognition has been widely applied: bank cheque pro-
cessing and form processing.

1.3.1 Bank Cheque Processing

Bank cheques are probably the most widespread documents. Nearly one hundred bil-
lion cheques circulate yearly all over the world [51]. The great bulk of them are still
processed manually by human operators, the most common and labor-consuming
operation being document amount reading and typing. Automation of bank cheque
processing uses both recent theoretical achievements of pattern recognition and doc-
ument analysis, and practical approaches developed in adjacent applications such as
postal automation or form recognition.

Processing numerical amounts in bank cheques is a di�cult task due to the nature
of the handwritten material. For instance, bank cheque systems have to take into
account the great variability in the representation of a numerical amount, e.g. the
number of components to be identi�ed, which is not necessary, for example, for a
zip-code recognition system since the number of digits is �xed and known a priori.
Another important requirement from a bank cheque system is its reliability. It has
been estimated that a system becomes commercially e�cient only when the error
rate is 1% or lower.

Several di�erent approaches to recognize numerical amounts on bank cheques can be
found in the literature. Lethelier et al [96] present a system to recognize numerical
amounts on French cheques. It is based on a segmentation-based recognition strategy
where an explicit segmentation algorithm provides the cut regions. Their classi�er
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is based on a combination of a Radial Basis Function network and a Timed Delay
neural network. Besides of the ten numerical classes, this system copes with four
non-numerical classes ( �-�, �.�, �,�, �F�).

Kaufmann and Bunke [74] propose a system for Swiss postal cheques where the
numerical amount is processed by the system presented in [55]. Since such a classi-
�er does not tackle the cents portion and non-numerical symbols such as currency
characters, horizontal lines, they are manually removed.

Dzuba et al [34] (Parascript) describe an industrial system for American personal
cheques which uses a classi�er based on matching input subgraph to graphs of symbol
prototypes. The symbol prototype consists of the symbol graph and the description
of its elements (geometrical characteristics of edges, mutual position of edges and
nodes, etc.). In the prototype an obligatory subgraph is de�ned. The obligatory
subgraph is a subgraph where each element of which should have a match in the
input subgraph. Some pre-processing is done by means of Hough transformation.

Another industrial system is described in [51]. The A2iA CheckReaderTM is designed
to process cheques written in French or English and it is based on some key ideas
such as Hierarchical organization, soft decision-making, modularity, complementar-
ity, adaptivity and, segmentation-based recognition. Their classi�er is composed of
�ve neural networks. Four of them are feed with di�erent feature sets and their
outputs combined into a �fth neural network. They claim that the average read rate
at the document level varies from 65 to 85% with error rate �xed at 1%, but they
do not specify the performance achieved by the handwritten digit classi�er. The
performance of some applications found in the literature, including those discussed
above are reported in Table II.

It is impossible to compare the results presented in Table II, since di�erent databases
and formats are used, di�erent non-numerical classes are involved, and di�erent sizes
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Table II

Performance of some bank cheque systems.

Author Rec. Error Rej. Test Year
(%) (%) (%) Database

Lethelier et al [96] 60.0 40.0 - 10,000 French cheques 1995
Houle et al [66] 55.0 1.0 44.0 1,000 American cheques 1996
Parascript [34] 53.0 1.0 46.0 5,000 American cheques 1997
Lee et al [98] 72.7 27.3 - 121 Brazilian cheques 1997
Suen et al [150] 62.0 1.0 37.0 400 Canadian cheques 1998
Kaufmann and Bunke [74] 79.3 20.7 - 1,500 Swiss cheques 2000

of databases are considered. However, we can observe that the recognition rates of
those systems that implemented a rejection mechanism (error rate �xed at 1%) varies
from 50 to 60%.

1.3.2 Form processing

Form processing such as census and tax forms also are potential application for
handwritten numerical string recognition. The challenge here consists of recognizing
strings of unknown length which are not neatly written. The most common database
used for research in this case is the NIST database.

NIST database was originally designed for competition of First Census Optical Char-
acter Recognition Systems Conference in May 1992 organized by the National Insti-
tute for Standards and Technology (NIST). The event was for assessing the state of
the art in OCR. In 1995 NIST released an upgrade called SD19 (Special Database 19)
[52] (see Appendix 1). Several researchers have been used NIST databases to report
results of algorithms for handwritten numerical string recognition. In the remaining
of this section we discuss some of these works. The results claimed by authors are
reported in Table III.
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Martin et al in [104] propose the exhaustive and saccadic scan methods for integrat-
ing segmentation and recognition of handwritten strings. In the �rst scan method
(Method 1), a neural network trained with back-propagation exhaustively scans a
numeral string, and it is trained to recognize whether its input window is centered
over a single digit or between digits. When its input window is centered on a digit,
it is classi�ed. The weakness of this method is that it generates too many candi-
date segments to be e�cient. In the saccadic scan method (Method 2), the neural
network is trained not only to recognize whether a character is centered on its input
window, but also to compute ballistic �eye� movements that enable the input window
jump from one digit to the next. A set of 5,000 numeral strings extracted from the
NIST database and equally distributed into 5 string classes (2-,3-,4-,5-, and 6-digit
string) is used for testing. No recognition rates have been reported. Thus, they were
calculated from the reported reject and error rates.

Keeler and Rumelhart [75] use a neural network to simultaneously segments and
recognizes connected characters. Their self-organizing integrated segmentation and
recognition system takes position-independent information as targets and self-organizes
the activities of the units in a competitive way to infer the positional information.
A set of 5,000 numeral strings extracted from the NIST database and equally dis-
tributed into 5 string classes (2-,3-,4-,5-, and 6-digit string) is used for testing. Again,
the recogniton rates were calculated from the reported reject and error rates (1%).

Fujisawa et al [41] introduce a region-based segmentation method for character seg-
mentation and recognition, which takes into account the stroke shapes of touching
patterns. The stroke shapes are analyzed in the case of touching characters. This sys-
tem �rst extracts the connected components from a numeral string. These connected
components are analyzed in terms of spatial interrelations. They can be grouped into
meaningful character patterns or separated by means of a method for �nding the
touching position. Multiple hypotheses and veri�cation based on digit recognition
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are used to deal with ambiguities. A set of 5,000 numeral strings extracted from the
NIST database and equally distributed into 5 string classes (2-,3-,4-,5-, and 6-digit
string) is used for testing.

Ha et al [55] build a system upon four main components. A pre-segmentation mod-
ule divides the input numeral string into independent groups of digits which are
processed by a cascade of two recognition methods. The digit detection module
identi�es and recognizes groups containing isolated digits and a classi�er recognizes
the remaining groups containing an arbitrary number of digits. The global decision
module merges all results and makes an accept/reject decision. They have used
about 5,000 strings of the NIST SD3 in their experiments.

Lee and Kim [95] propose a segmentation-based recognition where the segmentation
is implicitly performed. They introduce a new type of cascade neural network to
train the spatial dependencies in connected handwritten numerals. This cascade
neural network was originally extended from MLP to improve the discrimination
and generalization power. They used 5,000 strings of digits but they did not specify
the used data.

In the same vein, Britto Jr. et al [14] propose a handwritten numeral string recog-
nition method composed of two HMM-based stages. The �rst stage uses an implicit
segmentation strategy based on string contextual information to provide multiple
segmentation-recognition hypotheses. These hypotheses are veri�ed and re-ranked
by using a veri�cation stage based on a isolated digit classi�er. Such a strategy
allows the use of two sets of features and numeral models: one taking into account of
both segmentation and recognition aspects in an implicit segmentation-based strat-
egy, and another considering just the recognition aspects of isolated digits. They
used 12,802 strings of the NIST SD19 (hsf_7 series) and present results with and
without the knowledge of the size of the string.
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Table III

Recognition rates on NIST databases reported in the literature.

Authors String Number of Zero-rejection Error Rate
Length tested strings Level% 2% 1% 0,5%

Ref. [41] 2 1000 89.79 - - -
3 1000 84.64 - - -
4 1000 80.63 - - -
5 1000 76.05 - - -
6 1000 74.54 - - -

Ref. [104] 2 1000 - - 94.20 -
Method 1 3 1000 - - 87.90 -

4 1000 - - 79.90 -
5 1000 - - 75.60 -
6 1000 - - 63.30 -

Ref. [104] 2 1000 - - 92.60 -
Method 2 3 1000 - - 86.30 -

4 1000 - - 79.50 -
5 1000 - - 75.80 -
6 1000 - - 72.20 -

Ref. [55] 2 981 96.20 94.50 93.50 91.50
3 986 92.70 86.00 79.50 70.50
4 988 93.20 86.50 81.00 70.00
5 988 91.10 81.00 77.50 70.50
6 982 90.30 80.50 75.50 66.50

Ref. [95] 2 1000 95.23 - 95.20 -
3 1000 88.01 - 87.90 -
4 1000 80.69 - 80.50 -
5 1000 78.61 - 78.40 -
6 1000 70.49 - 70.20 -

Ref. [14] 2 2370 94.81 - - -
3 2385 91.61 - - -
4 2345 91.25 - - -
5 2316 88.30 - - -
6 2169 89.07 - - -
10 1217 86.94 - - -

As stated before, Table III summarizes the recognition rates at di�erent error levels
for the works discussed here. The symbol �-� indicates that no recognition rate has
been reported for the speci�ed error rate.
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1.4 Discussion

In the foregoing sections we have presented a review of the �elds related to our
research. By analyzing the performances of the state-of-the-art systems, we can
draw some observations:

• Researchers are getting interesting results for isolated handwritten digits. Ta-
ble I shows that even for large databases (e.g., Ref. [54]) the results are com-
pelling.

• It is di�cult to carry out a deeper analysis since di�erent databases and dif-
ferent sizes (e.g. from 2,000 to 173,124 in Table I and from 121 to 10,000 in
Table II) are used. Sometimes the authors use just one part of the database
even when the entire set is available.

• When the topic comes to numerical string recognition, performances go dramat-
ically down due to problems such as touching digits, overlapping, and unknown
number of digits. Such a fact can be clearly observed in Table III, especially
for error rates �xed at low levels.

• Practical systems usually report relatively low error rates which depend on
other sources such as city names in postal codes and legal amount in cheque
processing.

Even with recognition rates close to 99% for handwritten isolated digits, we can a�rm
that there is still a considerable gap between human and machine performances. This
gap is even greater when we consider the problem of strings of digits of unknown
length. Nevertheless, we have seen that important contributions on handwritten
numerical string recognition have been made.
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Since methods based on explicit segmentation have to face touching digits usually
through heuristic-based algorithms, several researchers have been investigated how
to avoid it by using implicit segmentation. The �rst systems built upon this concept
were introduced by Keeler and Rumelhart [75] and Martin et al [104]. More recently,
Lee and Kim [95] used a similar idea. In all these systems, neural networks were
used and they have shown to constitute a suitable framework for integrating the
segmentation and recognition processes. However, the problem with these methods
lies in the de�nition of the size of the sliding window used as input for the neural
network, and corresponding scan rate. Another weakness is that when using an
exhaustive scan method, too many segmentation hypotheses are yielded.

More recently, a more robust approach of implicit segmentation have been proposed
in [14]. It takes into account HMMs where the implicit segmentation strategy is
based on string contextual information to provide multiple segmentation-recognition
hypotheses. This is a promising way to face the inherent di�culties of the numerical
string recognition problem. However, this kind of systems must implement some pre-
processing steps, such as slant correction and size normalization in order to provide
good results.

In spite of the fact that most of the algorithms based on explicit segmentation take
into consideration some heuristics, which usually are time-consuming and di�cult
to de�ne, segmentation-based recognition systems with explicit segmentation still
achieves better results than those mentioned above. We can cite for example Ref.
[55]. Another example is the work discussed in this report. We shall see results that
surpass all methods based on implicit segmentation we have found in the literature.

1.5 Summary

In this chapter we have presented a state of the art of the main topics related to our
research: handwritten isolated digit recognition and handwritten numerical string
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recognition. We have seen that several important contributions have been made in
these �elds. Some recent works have been brie�y described in terms of features,
types of classi�ers, test databases, and results. In addition, di�erent approaches for
recognizing strings of digits have been presented and discussed. In the next chapter
we will introduce our system with a brief overview and present the de�nitions that
will be used throughout this work.



CHAPTER 2

SYSTEM OVERVIEW

The system discussed in this thesis takes a segmentation-based recognition approach
and a Recognition and Veri�cation strategy. The outputs from di�erent modules
of the system such as segmentation, recognition and post-processing are combined
using a probabilistic framework (described in Section 2.1.1), which adds a degree of
tractability to understand the interactions among the system modules.

An explicit segmentation algorithm determines the cut regions and provides multiple
spatial representation. After segmentation, di�erent kinds of features are extracted
in order to feed the recognition module, which is composed of one general-purpose
recognizer and two veri�ers. The goal of the veri�ers is to improve the overall
performance of the system by detecting over and under-segmentation. All classi�ers
used in the system are described in Section 2.1.2. Thereafter, the system generates
a list of hypotheses through a modi�ed Viterbi algorithm and then each hypothesis
is syntactically analyzed by means of a deterministic automaton. Finally, the global
decision module makes an accept/rejection decision.

Despite the fact that the veri�ers presented in this work are classi�ers with proba-
bilistic outputs, they are called veri�ers because they do not play the same role as
the general-purpose recognizer does in the system. In Section 2.1.3 we discuss the
veri�cation and its di�erent levels as well. In Section 2.1.4 we present the idea of
modular system employed in this work.
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2.1 De�nitions

2.1.1 Probabilistic Model

The goal of the probabilistic model is to de�ne a function that combines all the sys-
tem modules in order to allow a sound integration of all knowledge sources used to
infer a plausible interpretation. The probabilistic model that we are using has been
applied to speech recognition [97], handwritten word recognition [16] and handwrit-
ten digit recognition [96]. Such a model estimates the most probable interpretation
of the written amount M (noted M̂). Its input corresponds to an image I after
pre-processing.

In a probabilistic framework, M̂ is given by the maximum posterior probability:

P (M̂ |I) = max
M

P (M |I) (2.1)

We consider that the amount M can be expressed by the writer through some variant
V derived from the di�erent ways of expressing M . Each variant is composed of a
sequence of characters: V = v1, . . . , vm. In this way, we can represent also the e�ects
caused by the pre-processing. For example, 10000 is a variant of 100,00 because the
comma in 100,00 may be eliminated by the pre-processing. The amount M itself
will be a sequence of characters M = m1, . . . , mp representing what we call the
canonical form of M . The decomposition of the image of variant V into elementary
segments allows the introduction of a segmentation term S = s1, . . . , sm where m

corresponds to the number of characters in V . S describes for each character of V the
types of segmentation rules that may consider it to be composed of some fragments.
Therefore, sk = rb(k)

, . . . , re(k)
where rb(k)

is the initial segmentation rule (b means
begin) and re(k)

is the �nal segmentation rule (e means end) used to generate the
fragment sk.
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By summing up all segmentations and all variants, we can write

P (M |I) =
∑

S

∑

V

P (M, V, S|I) (2.2)

Considering an approximation where a sum of probabilities over segmentations rep-
resenting the same amount is replaced by the maximum probability of a single seg-
mentation, we have:

∑

S

∑

V

P (M,V, S|I) ≈ max P (M,V, S|I) (2.3)

This approximation was checked numerically through experimentation on the NIST
SD19 database. We have used about 2,000 images of strings of digits and we veri�ed
that such an approximation is plausible. Thus, we can assume that the image is
analyzed by only one segmentation and one variant, so that

∃V, S such that P (M |I) ≈ P (M,V, S|I) (2.4)

Using Bayes rule, we can write

P (M |I) ≈ P (I|M,V, S)× P (M,V, S)

P (I)
(2.5)

The probability of amount M is then:

P (M |I) ∝ P (I|M, V, S)× P (S|M, V )× P (M, V ) (2.6)
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We assume that segmentation S only depends on M through variant V since S

describes how V (and not M) is mapped onto elementary segments in I:

P (M |I) ≈ P (I|V, S)× P (S|V )× P (M,V ) (2.7)

This equation makes explicit the terms to be estimated: the recognition P (I|V, S),
the segmentation term P (S|V ) and the joint probability of amounts and their vari-
ants P (M, V ).

We also assume that the shapes of digits and other symbols only depend on their
class and their segmentation con�guration. This is an approximation since characters
are written by only one writer and because some ligatures cause contextual e�ects
in the shapes of characters. It is important to remark that in our system the union
of all segments is equal to the whole image and also that the system does not allow
intersection between segments unless characters overlap. However, overlaps occur
only rarely. In this way, we can derive the joint probability P (I|V, S) from individual
terms through:

P (I|V, S) ≈ ∏

i,k

P (ib(k)
. . . ie(k)

|vk, sk = rb(k)
. . . re(k)

) (2.8)

where ib(k)
is the initial segment of the image and ie(k)

is the �nal segment of the
image.

We assume that the shape of each character does not depend on the way that it is
segmented from its neighbors, i.e., character shapes are not signi�cantly a�ected by
the segmentation rules. Moreover, even if they are slightly, the improvement that we
may expect from injecting segmentation information into the model to estimate char-
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acter probabilities, is balanced by the increase of the number of model parameters
needed to estimate these probabilities. So that:

P (ib(k)
. . . ie(k)

|vk, sk = rb(k)
. . . re(k)

) ≈ P ([ib(k)
. . . ie(k)

]|vk) (2.9)

By applying Bayes rule, we have the following approximation:

P (M |I) ≈ ∏

i,k

P (vk|[ib(k)
. . . ie(k)

])× P ([ib(k)
. . . ie(k)

])

P (vk)
× P (S|V )× P (M,V ) (2.10)

where P (vk|[ib(k)
. . . ie(k)

]) is the result supplied by the recognizer, P ([ib(k)
. . . ie(k)

]) are
a priori probabilities of the images to be recognized, P (vk) are a priori probabilities
of classes recognized by the recognition module, P (S|V ) de�nes the probability of
the fragmentation of characters in the variant considered and P (M, V ) is the joint
probability of amounts and their variant.

2.1.2 Neural Classi�ers

Although many types of neural networks can be used for classi�cation purposes [99],
we opted for a MLP which is the most widely studied and used neural network classi-
�er. Moreover, MLPs are e�cient tools for learning large databases [89]. Therefore,
all classi�ers presented in this work are MLPs trained with the gradient descent ap-
plied to a sum-of-squares error function [9]. The transfer function employed is the
familiar sigmoid function.

In order to monitor the generalization performance during learning and terminate
the algorithm when there is no longer an improvement, we have used the method
of validation or early stopping. Such a method takes into account a validation set,
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which is not used for learning, to measure the generalization performance of the
network. During learning, the performance of the network on the training set will
continue to improve, but its performance on the validation set will only improve
to a point, where the network starts to over�t the training set, that the learning
algorithm is terminated (Figure 4). A second stop criterion is the maximum number
of epochs (de�ned in Table V).

Error

amount of training,
parameter adjustmentstop

training
here

training

validation

Figure 4 Using a validation database as stop criterion.

MLP is a measurement-level classi�er, i.e., it attributes to each possible label a
measurement value to address the degree or probability that the input sample has
the label. In this work, we will interpret the measurement value as estimation of a
posterior probability. In order to accurately estimate Bayesian probabilities, network
output values must lie in the range (0,1) and they must sum to unity. In our MLP
networks, the value of each output necessarily remains between zero and one because
of the sigmoidal functions used, but the criterion used for training did not require
the outputs to sum to one. Nevertheless, as shown by Richard and Lippmann in
[139] the summed outputs of the MLP network are always close to one. As such,
normalization techniques proposed to ensure that the outputs of an MLP network
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are true probabilities such as softmax [12] may be unnecessary. This is further
supported by results of experiments performed by Bourlard and Morgan [10], which
demonstrated that the sum of the outputs of MLP networks is near one for large
phoneme-classi�cation speech-recognition problems.

Let Ω be a pattern space which consists of N mutually exclusive sets Ω = ω1∪. . .∪ωN ,
each of ωi, i ∈ Λ = {1, . . . , N} representing a set of speci�ed patterns called a
class (e.g., N = 10 for digit recognition). Let x be an input pattern that should
be assigned to one of the N existing classes. e means the classi�er and e(x) =

(m1(x),m2(x), . . . , mN(x)) means that the classi�er e assigns the input x to each
class i with a measurement value mi(x). This de�nition is used for all classi�ers of
the system. Table IV describes our classi�ers as well as where they are used in the
system.

Table IV

Description of the classi�ers used in our system.

Classi�er Classes Recognized Usage
e3 3 non-numerical classes {�#�, �,�, �.�} To feed e13

e10 10 numerical classes {0..9} To feed e13 (numerical
amounts) and classi�cation
(NIST)

e13 13 classes {0..9} ∪ {�#�, �,�, �.�} Classi�cation (numerical
amounts)

vo isolated and over-segmented characters Veri�cation
vu isolated and under-segmented characters Veri�cation

All networks presented in Table IV have one hidden layer where the units of input
and output are fully connected with units of the hidden layer. The number of hidden
units used in this work are 70, 80, 20, 30 and 30 for e3, e10, e13, vo, and vu respectively.
These architectures were determined empirically based on the performance on the
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validation set. The learning rate term (η) is set at high values in the beginning to
make the weights quickly �t the long ravines in the weight space, then it is reduced
each Netiteration epochs by multiplying itself by a constant Netstep. In this manner,
the weights can �t the sharp curvatures. If the learning rate is very small, then
the algorithm proceeds slowly, but accurately follows the path of steepest descent in
weight space. If the learning rate is largish, the algorithm may oscillate (�bounce o�
the canyon walls�). A simple method of e�ectively increasing the rate of learning is
to include a momentum term (µ). The idea is consistently pushing a weight in the
same direction, then it gradually gathers �momentum� in that direction. Table V
de�nes all parameters used to training the networks de�ned in this section.

Table V

Parameters used to train the neural networks.

Parameter Value
Maximum Number of Epochs 200
Initial Learning Rate (η) 0.50
Momentum (µ) 0.93
Netiteration 25
Netstep 0.50

The rule that de�nes how the classi�er assigns an input pattern x to a class i is
known as decision rule. In this work, the decision rule applied to e13 and e10 (when
it is used as a general-purpose recognizer) is de�ned as:

e13(x) = max
i∈Λ

mi(x) (2.11)

The goal of the veri�ers vo and vu is to validate whether an input pattern x is an
isolated character or not. We will see in Chapter 4 that this is achieved by multiplying
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three measurement values (classi�er and both veri�ers). Then, if the outputs of the
veri�ers that represent the posterior probability of an input pattern x be an isolated
character (�rst output) are low, the output supplied by the classi�er will be penalized,
otherwise, it will be con�rmed. For this reason, the decision rule used by the veri�ers
simply takes the measurement value produced in their �rst output, which contains
the posterior probability of an input pattern x to be an isolated character. Thus, vo

shares the same decision rule as vu, which is de�ned as:

vu(x) = m1(x) (2.12)

2.1.3 Levels of Veri�cation

The Recognition and Veri�cation scheme looks straightforward, with a veri�cation
module embedded in the traditional classi�cation system, which has a general-
purpose recognizer only. The goal of the general-purpose recognizer is to assign
a given input to one of the n existing classes of the system, while the pattern veri�er
assumes the role of an expert to evaluate precisely the result of the recognizer in
order to compensate for its weakness due to particular training, and consequently
to make the whole system more reliable. Usually, a pattern veri�er is applied after
a general-purpose recognizer and it is designed to �plug and play�, i.e., it is used
without knowing the implementation details of the recognition modules.

Takahashi and Gri�n in [152] de�ne three kinds of veri�cation: absolute veri�cation
for each class (Is it a �0� ?), one-to-one veri�cation between two categories (Is it a
�4� or a �9� ?) and veri�cation in clustered, visually similar, categories (Is it a �0�,
�6� or �8� ?).

In addition to these de�nitions, we introduce the concept of levels of veri�cation,
where two levels are considered: high-level and low-level. We de�ne as high-level
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veri�ers those that deal with a sub-set of the classes considered by the general-
purpose recognizer. The goal of the veri�ers at this level is to con�rm or deny the
hypotheses produced by the general-purpose recognizer by recognizing them [152,
167]. We de�ne as low-level veri�ers those that deal with meta-classes of the system
such as characters and parts of them. The purpose of a low-level veri�er is not to
recognize a character, but rather to determine whether a hypothesis generated by
the general-purpose recognizer is valid or not [26].

In this work we propose two low-level veri�ers to cope with the over-segmentation
and under-segmentation problems. The objective of these veri�ers is to validate the
general-purpose recognizer hypotheses by using the following meta-classes: charac-
ters, parts of characters and under-segmented characters. Chapter 4 will present
more details about these veri�ers.

2.1.4 Modular System

Since a handwritten digit string recognition system has several potential applications,
it is very interesting to build a system adaptable to as many di�erent contexts as
possible. Due to the magnitude and complexity of this kind of system, they are
usually divided into several modules, where each one assumes speci�c functions in
order to facilitate the construction of the system. In order to gain a better insight of
the modules in terms of a generic system, we introduce two de�nitions related to the
system modules: Application Dependent (AD) modules and Task Dependent (TD)
modules.

We de�ne as AD those modules that should be changed (replaced or removed) to cope
with another context. The best example of an AD module is the post-processor which
is usually the part of the system that has more knowledge about the application. We
de�ne as TD those modules related to the task, e.g., digit string recognition. These
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modules can be used for various applications. In Figure 5, the white boxes represent
TD modules while the grey boxes represent AD modules.

Component
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Analysis

Global
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I
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Component Detection
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Feature
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Recognition and
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Post-Processing and
Global Decision

P(vk|[ib(k)...ie(k)])

P(M,V)

Figure 5 Block diagram of a numeric string recognition system

In Figure 5 we can see two di�erent versions of the same system. The �rst ver-
sion, which considers all modules (white and grey boxes), was designed to process
numerical amounts of Brazilian bank cheques, while the second version, which does
not consider the grey boxes, was designed to process strings of digits from the NIST
database. As we can notice, through the exclusion of four AD modules (Contex-
tual Feature, Structural Features, e3 and e13) and the modi�cation of the Syntactic
Analysis module, we have built a new system specialized in another context. Fig-
ure 5 also presents the relationship between the system modules and its estimators.
As we can see, the proposed system takes into account the estimators of recogni-
tion (P (vk|[ib(k)

. . . ie(k)
])) and post-processing (P (M,V )) presented in Equation 2.10.

Since our classi�ers are based on neural networks, which provide direct estimation
of the posterior probabilities, we decided not to use the estimator related to a priori
probabilities (P ([ib(k)

. . . ie(k)
])) of the images to be recognized. We will see that the
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veri�ers can replace this estimator successfully. Lethelier et al in [96] use the em-
pirical frequencies of segmentation con�gurations for each class in order to compute
the probability of fragmentation of characters (P (S|V )). However, we have observed
that our segmentation algorithm does not supply discriminative information about
the classes of the system. This is illustrated in Figure 6.

1 4 7 8
(a) (b)

Figure 6 Problems of using segmentation estimator: (a) Distribution of the seg-
mentation points for isolated digit classes 1,4,7 and 8 and (b) Samples of
isolated digits where the segmentation will not provide any segmentation
point.

Figure 6a presents the distribution of the segmentation points provided by our seg-
mentation algorithm [122] for four di�erent isolated digit classes (1,4,7 and 8) of the
training set of the NIST database. We can observe that even for di�erent classes the
segmentation algorithm provides a very similar distribution of segmentation points,
hence, it will be di�cult to improve the performance of the system using the primi-
tives generated by the segmentation algorithm. The second problem can be observed
in Figure 6b. In this case, the segmentation algorithm will not produce any segmen-
tation point due to the lack of minima and maxima on the superior and inferior
contours respectively. For these reasons, we choose not to use the estimator P (S|V ).

2.2 Summary

In this chapter all de�nitions used throughout this thesis were presented. We have
seen that all knowledge sources of the system are combined by means of a probabilis-
tic model and also that all classi�ers used into the system are MLPs trained with
the back-propagation algorithm. In addition, the concepts about levels of veri�cation
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and modular system, which are underpinning ideas in our strategy, were introduced.
In the next chapter the �rst two modules depicted in Figure 5 are discussed.



CHAPTER 3

COMPONENT DETECTION AND SEGMENTATION

In this chapter we describe the �rst two modules of the system. Section 3.1 describes
the component detection module which receives as input a binary image. Before de-
tecting the components in the image, this module performs a very simple smoothing
operation. Once the components have been detected, they are used as input to the
segmentation module, which is discussed in Section 3.2. Such an algorithm produces
a list of segmentation hypotheses that will be assessed by a recognition module.

3.1 Component Detection

The goal of this module is to divide the input numeral string, called string image (SI),
into groups of components, called partial images, where each group should represent
an integral number of components. This allows us to convert the recognition of a
string image to that of its partial images, thus reducing the complexity of the sub-
sequent tasks. This module operates in three steps: connected component analysis,
delimiter detection, and grouping.

3.1.1 Connected Component Analysis

Before detecting the components of the image, a smoothing operation is done to
regularize the edges in the image and to remove small bits of noise [148]. A 3 × 3

mask (see Figure 7) is passed over the entire image to smooth it. The mask begins
in the lower right corner and processes each row moving upwards row by row. The
pixel in the centre of the mask is the target. Pixels overlaid by squares marked �X�
are ignored. If the pixels overlaid by the squares marked �=� all have the same value,
i.e., all zero, or all one, then the target pixel is forced to match them, otherwise it is
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not changed. This test is done 4 times for each target pixel, once for each possible
rotation of the mask.

X X X

= T =

= = =

Figure 7 3× 3 mask for smoothing.

The result is that single-pixel indentations in all edges are �lled and single-pixel
bumps are removed. Furthermore, the mask modi�es the identical image that it
scans, so that lines that are one pixel thick will be completed eroded (Figure 8).
This is a small price to pay for a single and e�cient smoothing operation. Indeed,
it is extremely rare anything other than noise is removed by this �lter.

(a) (b)

Figure 8 Result of the smoothing algorithm (a) Original image and (b) Image
after smoothing.

After this light pre-processing, the image is segmented into connected components
(CC) and those very small are eliminated by �ltering, i.e., CCs with surface smaller
than 10 pixels are discarded. Other kind of CC we are interested in removing at
this point is the stroke. Usually, it is found at the beginning and at the end of the
numerical amount. A CC is regarded as a stroke if the following two rules are met:

1. CCwidth

CCheight
> 4.3.
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where CCwidth is the width of the CC and CCheight the height of the CC.

2. The gravity centre of the CC should be closer to the median line (SImedian)
than either to the upper line (SIupper) or to the bottom line (SIbottom).

The �rst rule tries to identify the stroke through its basic characteristic, i.e., the
relationship between width and height. Usually, strokes are much larger than higher.
The second rule aims at preserving those strokes disconnected from digits such as
�4� and �5�. Figure 9 shows an examples of this problem. In such a case, the stroke
detected at the beginning of the image satis�es both rules. The same does not
happen for the stroke disconnected from the digit �5� (CC2).

CC0

CC1

CC2

CC3

CC4

CC5 CC6 CC7

CC8

CC9

SImedian

SIbottom

SIupper

CCwidth
CCheight

Figure 9 Numerical amount with all components detected.

3.1.2 Delimiter Detection

The second step aims at identifying speci�c parts of the numerical amount, namely,
period (�.�) and comma (�,�). By inspecting our numerical amount database, we
noticed that such components are located in the inferior part of the image. Thus,
we consider as delimiters those components located entirely below the median line of
the numeral string. In Figure 9 we can see both delimiters (CC3 and CC8) detected.
The information about their location serve as some of the features used to feed the
classi�er. We will discuss this issue latter in Chapter 4.
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3.1.3 Grouping

The last step tries to overcome the e�ects of fragmentation. An CC can represent
either an integer number of characters or not. The second situation is critical and
should be avoided. Basically, the grouping step tries to group a character composed
of several CCs by detecting potential parts and grouping each of them to its nearest
neighbour. We have adopted a strategy similar to the one presented by Ha et al
in [55]. Such a strategy takes into account the median line of the image (SImediam).
However, when dealing with a numerical amount, the SImediam could be biased by
the position of the delimiters. Therefore, SImediam should be re-computed without
considering the delimiters.

An CC is regarded as a broken part if at least one of the following two conditions is
met:

1. The CC does not intersect the median line (SImediam) of the numeral string.

2. max(CCabove,CCbelow)
min(CCabove,CCbelow)

> 5

where CCabove and CCbelow denote the vertical height of the part above and
below SImediam, respectively.

Even when an CC intersects the median line, it may still be considered as broken
part by the second condition if the intersection point is near to the top or bottom
part of the CC. Thereafter, those CCs which are deemed broken parts are grouped
to their neighborhood. We have to decide to which neighboring CC a broken part
(CCbroken) should be grouped. The decision is based on the following rule:
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IF CCleft < CCright THEN
Group(CCprevious,CCbroken)

ELSE
Group(CCbroken,CCnext)

If a broken CC is on the left or right end of the numeral string, CCleft or CCright

is set to a very high value to achieve the correct grouping. Figure 10 de�nes the
foregoing geometric quantities. The resulting partial images are ordered from left to
right according to their horizontal position in the SI. In the case of Figure 10, we
would expect three partial images corresponding to �4�, �5�, and �6�, respectively.

CCright

CCbelow

CCabove

CCprevious

CCnext

CCleft

CCbroken

SImedian

CCheight

Figure 10 De�nition of various geometric quantities.

All thresholds described in this section were determined based on experimentation.

3.2 Segmentation

As stated elsewhere, our system takes into account an explicit segmentation algo-
rithm, which determines the cut regions and provides multiple spatial representation.
In this section we describe the segmentation algorithm we have developed. It makes
use of three complementary sets of structural features: contour, pro�le, and skeleton.
The �nal objective of this module is to provide a list of hypotheses of segmentation
without any a priori knowledge of the context, such as the number of characters to
be segmented.
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We have focused the design of the segmentation algorithm on the limitation of heuris-
tic rules so that it could be able to cope with the di�erent types of connected numeral
strings depicted in Table VI.

Table VI

Types of connected numeral strings [22].

Category Style of Touching Examples

Single touching

Multiple touching

3.2.1 Generation of the Segmentation Features

Depending on the context, a lot of features are available to �nd plausible segmenta-
tion points in a character image. Certainly some of the most used in the literature
are the minima and maxima from contour and pro�le [88, 96, 145]. Indeed, these
features can be obtained easily and they usually express directional variability of the
character strokes and then possible cuts.

However, they are not even fully informative to localize any kind of connection
between characters, mostly when the handwriting is strongly skewed or overlapped.
To overcome such problems, we consider a third set of features provided by the
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skeleton: the intersection points. These points are often located in the neighborhood
of stroke connections where contour and pro�le features are not always available.

The contour of an image can be de�ned as the image envelope. This is a bi-
dimensional data where each contour point CPi is associated with the coordinates
(Xi, Yi) of the image. To construct the pro�le, �rst we locate the leftmost and the
rightmost pixels of the contour. The contour is split at these two points. To get the
pro�le, for each x value, we select the outermost y value on each contour half. From
these sets of features (contour and pro�le), we are able to localize the �rst list of
potential cuts which correspond to the local minima (maxima) of the upper (lower)
contour and pro�le (Figures 11a and 11b). We de�ne these points as Basic Points
(BP)s.

(a) (b) (c)

Figure 11 Features used by the segmentation algorithm. (a) Contour, (b) Pro�le,
and (c) Skeleton.

Let us de�ne now characteristics of the skeleton :

De�nition 1: In a binary image, the intensity of a pixel p, denoted I(p), is either 0
(white) or 1 (black). A pixel p is a foreground pixel i� I(p) = 1. Conversely, a pixel
p is a background pixel i� I(p) = 0.

De�nition 2: Using 8-Freeman directions, when the eight neighbors of a pixel p are
traced clockwise, the neighborhood of p is denoted T (p), such as:
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T (p) =
8∑

i=1

I(p′i) (3.1)

where p′i is the ith neighbor of p. We can then de�ne the terminal point (TP) when
T (p) = 1 and the intersection point (IP) when T (p) > 2. IPs and TPs are called
characteristic points of the skeleton.

De�nition 3: A skeleton path is a pixel sequence of the skeleton where each ex-
tremity corresponds to a characteristic point.

The skeleton image is obtained by using the thinning algorithm proposed by Jang
et al [72]. The advantage of this algorithm relies on the limited number of IPs
generated in the neighborhood of connected strokes of di�erent characters. After
some experiments, we realized that two kinds of IPs occur very often. The �rst one,
which we call �Class 1�, contains all con�gurations of IPs with one upper segment
and two lower segments. The second type, which we call �Class 2�, contains all
con�gurations of IPs with two upper segments and one lower segment. Figure 12
depicts all possible con�gurations for each class. Since these con�gurations are very
common, we try to take advantage of them to build the segmentation paths. We
discuss this in the following subsection.

Upper
Segments

Lower
Segments

Class 1 Class 2

Figure 12 Two di�erent classes of IPs.
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3.2.2 Building Segmentation Paths

After observing some images of touching digits, we realized that very often the
touching area contains BPs and IPs. In the light of this, we assume that if there is a
BP near to an IP, this could indicate a possible connection between two digits. Thus,
once BPs and IPs have been detected in the image, the next step is to establish a
relationship among those points belonging to the same neighborhood.

In order to determine the proximity between two points, we used the estimation
of the thickness of the strokes (Et), obtained with the projection of the density
histogram. Thus, two points BPi and IPj belong to the same neighborhood if one of
the two following Equations are veri�ed:

d(BPi, IPj) ≤ Et (3.2)

d(proj(BPik), IPj) ≤ Et for k = 1, 2 . . . n (3.3)

where d is the Euclidian distance, proj(BPik) is the vertical projection of BPi at
the step k on the segment whose height is n pixels. Figures 13 exempli�es both
con�gurations of neighborhood veri�cation. In such cases, the circle stands for Et.
In Figure 13a both BP and IP are inside of the circle, so Equation 3.2 is veri�ed.
The same does not happen in Figure 13b where the distance between the BP and
the IP is greater than Et. However, the vertical projection of the BP crosses the
circle, therefore, Equation 3.3 is veri�ed.

Once the relationship among BPs and IPs have been established, the algorithm de-
cides which type of segmentation cut should be performed. The cut may be generated
either straight away from the skeleton path, or orthogonal to it. The �rst case con-
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Et
BP

IP
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(a)

Et

BP

IP

Skeleton
 Path

BP Projection

(b)

Figure 13 Distance veri�cation between a BP and an IP (a) Distance veri�ed by
Equation 3.2 and (b) Distance veri�ed by Equation 3.3.

templates the two classes of IPs described in the previous subsection (Figure 12). If
the lower segment of a �Class 2� IP is linked to a upper segment of a �Class 1� IP (or
vice-versa) and both IPs have one BP near to them, the skeleton path linking both
IPs (Pskeleton) is used as part of the segmentation cut (see Figure 14b). Afterwards,
complementary paths between the BPs and IPs (Pcomp) are traced (see Figure 14c).
Therefore, the segmentation path Pseg = Pskeleton

⋃ Pcomp. This kind of cut is used
very often to segment touching digits composed of circular strokes, such as �00�, �06�,
�09�, �89�, and so forth.

(a) (b) (c) (d)

Figure 14 Segmentation path in the �rst case (a) Skeleton, (b) Pskeleton, (c) Pcomp,
and (d) Digits segmented.

When there is no connection between two IPs, but there is a BP related to an IP, the
second case is employed. Here the segmentation path is traced orthogonally to the
skeleton path. In order to �nd the best position to perform the cut, the algorithm
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evaluates 2 × Et di�erent orthogonal cuts along the segment being analyzed and
takes the shortest one. Figure 15 depicts the zone of segmentation around the IP
(represented by a circle) and the shortest cut for each segment as well.

In order to reduce the number of segmentation cuts, the algorithm does not allow
cuts on small segments. We de�ne as small those segments where the number of
pixels in the skeleton path between the IP and the TP is smaller than 20% of the
total number of pixels in the skeleton path. An example of this is shown in Figure
15, where the segment �A� does not have a segmentation cut. This heuristic is worth
of use, once the number of segmentation hypotheses to be assessed by the recognizer
is reduced.

2 x Et

Segment A

Segment B

Segment C

Figure 15 Example of orthogonal cuts.

In some cases, even if there is a connection between two characters, the skeleton
path has no IP (see Figure 16a). To correctly segment this kind of images and
avoid under-segmentation (the lack of segmentation point), the algorithm builds a
segmentation path based on the vertical projection of the BP. Figure 16c shows the
segmentation paths built based on the BP extracted from the pro�le of the image
16b.
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(a) (b) (c)

Figure 16 Segmentation based on BP only. (a) Original image, (b) BP from the
pro�le, and (c) Image segmented.

Figure 17 shows us that with a limited number of rules, the algorithm is capable of
providing the correct segmentation in most cases of connected characters depicted
in Table VI.

Figure 17 Examples of touching digits correctly segmented.

In spite of the fact that two di�erent BPs (contour and pro�le) can be combined with
IPs, sometimes no BP is found in the touching area. Some examples of this problem
are shown in Figure 18 where the touching areas are signed by a circle. In such cases,
the algorithm may provide either an under-segmentation (lack of segmentation path)
or missegmentation.
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Figure 18 Lack of BPs.

3.2.3 Generating Hypotheses of Segmentation

After generating all segmentation paths, the following task consists of determining all
hypotheses of segmentation which will be assessed by the recognizer. In other words,
we have to combine all sub-images generated in the previous step in a meaningful
way, so that the number of hypotheses of segmentation may be naturally limited.

This is done through segmentation graphs where the pieces of character generated by
the segmentation algorithm are represented by the states (Ci) and the segmentation
paths (SPi) by the transitions. In this way, we build all possible graphs by activating
and deactivating SPs. Figure 19 exhibits the segmentation graphs for the touching
pair �56� depicted on its left side. In such a case, the transitions represented by
arcs stand for deactivated SPs while those represented by straight lines stand for
activated SPs. The segmentation also can be represented through a single graph
(Figure 19b) which can produce all segmentation hypothesis depicted in Figure 19a.

It can be observed that among all hypotheses depicted in this example, the optimal
one is among them (hypothesis (f)). Thus, we would expect that the recognizer
will assign the greatest score of recognition for this hypothesis. Nevertheless, since
we have chosen an over-segmentation strategy, i.e., the algorithm produces several
segmentation hypotheses to get the correct one among them, the system must deal
with the over-segmentation problem. It happens when a not optimal hypothesis gets
greater score than the optimal one. For example, the hypothesis (e) recognized as
�510� could get a greater score than hypothesis (f), recognized as �56�. Later in
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Figure 19 Segmentation graphs: (a) Sub-graphs representing all segmentation hy-
potheses, and (b) segmentation represented through a single graph.
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this thesis we will discuss how we address such a problem. The performance of this
algorithm on digit string recognition will be discussed in Chapter 5.

3.3 Summary

In this chapter we have presented the �rst two modules of our system. We have seen
that the component detection module takes a smoothing algorithm before detecting
and grouping connected components. We also have described our segmentation algo-
rithm, which combines three di�erent features in order to generate the segmentation
paths. In the next chapter we will discuss the Recognition and Veri�cation strategy
and how the problem of over-segmentation mentioned above has been addressed.



CHAPTER 4

RECOGNITION AND VERIFICATION STRATEGY

In this chapter we describe all modules de�ned previously in Section 2.1.4. In ad-
dition, we present the feature set used by each classi�er and also describe how the
low-level veri�ers and general-purpose recognizer interact with each other.

4.1 General-purpose recognizer

Our general-purpose recognizer is composed of 3 modules: e10, e3, and e13 (see Figure
5). e10 and e3 are specialized in ten numerical and three non-numerical (�#�, �,�, and
�.�) classes respectively. Both classi�ers use a mixture of concavity, contour based
features and surface of the characters.

The basic idea of concavity measurements is the following: for each white pixel in
the component, we search in 4-Freeman direction (Figure 20d), the number of black
pixels that it can reach as well as which directions the black pixel is not reached.
When black pixels are reached in all directions (e.g. point x1 in Figure 20a), we
branch out in four auxiliary directions (s1 to s4 in Figure 20c) in order to con�rm if
the current white pixel is really inside a closed contour. Those pixels that reach just
one black pixel are discarded.

Thereafter, we increment the position in the feature vector that �ts with results
returned by the search (Figures 20a and b). In Figure 20b we represent the feature
vector where each component has two labels. The superior label means the number
of black pixels found during the search while the inferior label means the directions
where the black pixels were not reached. For example, the pixel x2 (Figure 20a)
reaches the black pixel in all directions except in direction 3. Therefore, the position
7 of the feature vector is incremented. For pixel x1, the position 9 is incremented
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because it reaches the black pixel in four directions. However, using the auxiliary
direction s1 we con�rm that it is not inside a closed contour. When the pixel is
inside a closed contour, the position incremented is the 8th.

Since we are dividing the image into six zones, we consider six feature vectors of
13 components each. Therefore, in the example presented above, the pixel x2 will
update the second vector while the pixel x1 will update the �fth vector. Finally,
the overall concavity feature vector is composed of (13 × 6) 78 components which
are normalized between 0 and 1 by summing up their values and then dividing each
one by this summation. The remaining feature vectors considered in this work are
normalized in the same way.

1 1
0,1 1,2 2,3 3,0 0 1 2 3 -- s1 s2 s3 s4

  0      1      2      3      4      5      6      7      8      9    10     11   12

2 2 2 2 3 3 3 3 4 4 4 4 4

x2

x1

s1 s2

s3 s4

0

2

3 1

(b)

(a)

(c) (d)

Figure 20 Concavities measurement: (a) Feature vector, (b) Concavities, (c) Aux-
iliary directions, and (d) 4-Freeman directions.

The contour information is extracted from a histogram of contour directions. For
each zone, the contour line segments between neighboring pixels are grouped re-
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garding 8-Freeman directions (Figure 21c). The number of line segments of each
orientation is counted (Figure 21b). Therefore, the contour feature vector is com-
posed of (8×6) 48 components normalized between 0 and 1. Finally, the last part of
the feature vector is related to the character surface. We simply count the number
of black pixels in each zone and normalize these values between 0 and 1. Thus, the
�nal feature vector, which feeds e10 and e3 has (78 + 48 + 6) 132 components.

0 1 2 3 4 5 6 7

2

3

1

4

0

5

6

7

(a) (b) (c)

0 2 4 4 3 4 5 1

Figure 21 Contour measurement: (a) Contour image of the upper right corner
zone, (b) Feature vector, and (c) 8-Freeman directions.

As depicted in Figure 5, the classi�er e13 combines the e10 and e3 outputs, one
contextual feature of position, and four structural features. Therefore, e13 has 18
inputs. Such a scheme of combination has produced the best recognition rates in
our experiments that consider the database of numerical amounts on Brazilian bank
cheques. The contextual feature of position, which was detected at the component
detection phase, is responsible for minimizing the confusion between the digit �1�
and the symbol �,�. As discussed in Section 3.1.2, we have observed that the symbol
comma is always located entirely below the median line of the numeral string. In
this way, when the component is located entirely below the median line, the 14th

position of the feature vector used by e13 receives 1, otherwise 0. As we can observe
in Figure 22, the sole information capable of removing the confusion between the
digit �1� and the symbol �,� is the position of the component in the image context.

In order to reduce the confusion between the numerical classes �4� and �7� and the
non-numerical symbol �#�, we have used feature points of the skeleton. Four compo-
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Figure 22 Contextual and structural features: (a) Numerical amount with the me-
dian line detected (b) Similarity between digit one and symbol comma,
and (c) Structural features extracted of the skeleton.

nents have been considered: end points, crossing points, and two directional points,
which are detected when the skeletal path changes its direction in the horizontal or
vertical axis. These points are represented in Figure 22c by the numbers 1, 2, 3, and
4 respectively. Once the skeletal points were detected, the points of each con�gu-
ration are counted, normalized between 0 and 1 and the last four positions of the
feature vector used by e13 updated.

We show in Chapter 5 that this classi�er reaches very interesting recognition rates
when dealing with isolated digits. However, when it is used within a complete system,
it faces more complex problems such as over-segmentation and under-segmentation.
In the �rst problem, the intra-character segmentation hypothesis provides better
results than any of the inter-character segmentation hypotheses. Figures 23a, b,
and c show some examples of this problem. In the second problem, the lack of
segmentation cuts produces better results than the correct segmentation hypothesis
(Figure 23d).

Instead of using heuristics to overcome these problems, we opted for the use of a
strategy based on low-level veri�ers, which is more robust and reliable. Initially, we
developed a strategy based on an isolated veri�er, which was responsible for detecting
both over-segmentation and under-segmentation [124]. After some experiments, we
realized that a more specialized veri�er could produce better results than a generic
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0.99 0.99 0.98 0.980.97
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P(1/C0) X P(1/C1) = 0.98> P(4/C0,C1) = 0.97
0.99 0.99 0.97
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P(0/C0) X P(1/C1) = 0.99 > P(9/C0,C1) = 0.98
0.999 0.99 0.98
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(c)

P(0/C0) X P(0/C1) = 0.98 <P(0/C0,C1) = 0.99
0.99 0.99 0.99

C0,C1C1
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Figure 23 Misclassi�cation caused by over-segmentation (a, b, and c) and under-
segmentation (d)

one. In the following subsections we present both veri�ers, their respective feature
sets and how they interact with the general-purpose recognizer.
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4.2 Over-segmentation Veri�er

The main objective of this veri�er is to improve the performance of the general-
purpose recognizer by detecting over-segmented characters (Figures 23a, b, and
c). Thus, the veri�er takes into account two classes: isolated characters and over-
segmentation. In order to discriminate these two classes, we developed a new feature
set called Multi-level Concavity Analysis. First of all, we introduce the de�nitions of
Concavity Levels. We de�ne as Initial Concavity Level (ICL) for a background pixel,
the number of black neighbors that it has in the 4-Freeman directions. We also con-
sider one label to identify the background pixels located outside of a closed contour
but with four black neighbors. Those pixels that have only one black neighbor are
not considered. Figure 24 shows an image labelled with the four possible labels used
in ICL.

2-black
neighbours

3-black
neighbours

4-black
neighbours3-black

neighbours
(outside of the
closed contour)

Figure 24 Image labelled with ICL where the four possible labels are represented.

The �rst step of this analysis consists of labelling with ICL the background pixels of
the over-segmented piece (Iseg) and its corresponding original piece of handwriting
(Iorig). Figure 25 exhibits two examples of this procedure. Afterwards, the following
veri�cation is carried out: for each background pixel found in both images (Iorig

and Iseg), we assigned to the �nal image (represented by the MCA in Figure 25) a
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speci�c label (represented by the black area) when the ICLs are di�erent, otherwise,
we assigned the same ICL found in both images. The same veri�cation procedure is
carried out over the foreground pixels. However, in such a case we assigned a speci�c
label (represented by the bold dot) to MCA when the pixels found in both images
share the same label. The latter procedure aims at computing the relative area of
the over-segmented part.

Figure 25 Two samples (a and b) of Multi-level Concavity Analysis (MCA) and
Contextual Information (CI).

The second part of this analysis concerns with Iseg contextual information (rep-
resented by CI in Figure 25), which is extracted by taking into account the Iseg

complement. As we can observe in Figure 25, the complement that we are using is
limited to Iseg width and it is composed of the Iorig background, which was labelled
with ICL, and the surface of the Iorig (represented by the dot in Figure 25). Figure
25 also shows the �nal labelling, which is composed of multi-level concavity analysis
(MCA) and contextual information (CI) about the over-segmented piece.
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Therefore, this feature set has 7 possible labels: the four labels of ICL, the label that
represents the di�erence between concavity levels of Iorig and Iseg, the label that
represents the surface of the over-segmented piece, and the label that represents the
surface of the original image in the context of the segmentation. Finally, the multi-
level concavity analysis with contextual information is divided into six regions (the
same division shown in Figure 20b) and (7× 6) 42 components normalized between
0 and 1 are considered.

4.3 Under-segmentation Veri�er

To complement the previous veri�er, this one is devoted to reduce the confusion
between isolated and under-segmented characters. Thus, this veri�er considers two
classes: isolated characters and under-segmentation.

(a) (b)

Figure 26 Zoning used by the under-segmentation veri�er.

After analyzing the system errors, we observed that touching digits with strong con-
cavities, e.g. �00�, often are recognized as �0� with a high probability. After trying
some features such as, horizontal transitions, pro�le distances, and structural infor-
mation, we conclude that the same concavity analysis and information about the
surface used by the general-purpose recognizer is a good feature set to discriminate
isolated characters from under-segmented ones. However, a di�erent way of zoning
which divides the image into three vertical parts has been employed. Such a strategy
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aims at emphasizing the region of the image where the connections between charac-
ters occur often (Figure 26). As a result, ((13 + 1) × 3) 42 components normalized
between 0 and 1 are considered.

4.4 How the Classi�er and Veri�ers Interact With Each Other

According to the probabilistic model presented in Equation 2.10 (Section 2.1.1), the
�nal probability for a hypothesis of segmentation-recognition is given through the
product of the probabilities produced by its sub-components. The probability of a
sub-component is given by the product of the probabilities produced by the general-
purpose recognizer, over-segmentation veri�er, and under-segmentation veri�er.

In Figure 27 we present an example of how the veri�ers interact with the general-
purpose recognizer. In order to better illustrate this, we reproduced the problem
depicted in Figure 23a, where the the over-segmented hypothesis got a better result
than the correct one. The schema in Figure 27 is carried all the way through, from
segmentation, feature extraction, to recognition and veri�cation. In the column
�outputs� we can see the outputs of the neural networks (represented by a black
box) as well as the probability produced by them. According to the decision rules
presented in Section 2.1.2, the veri�ers always consider their �rst output, which
contains a posterior probability of an input pattern of isolated character. Thus, when
these probabilities are low, the output supplied by the general-purpose recognizer
(e13) is penalized, otherwise, it is con�rmed.

We can visualize this penalty in the �rst two components of the second segmen-
tation hypothesis. In such cases, the probabilities of these components of isolated
character are very low (0.010) and hence the probability generated by the general-
purpose recognizer is penalized. The opposite happens to both components of the
�rst segmentation hypothesis as well as the last component of the second segmenta-
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Figure 27 Interaction between the general-purpose recognizer and veri�ers.

tion hypothesis. In these cases, both veri�ers con�rmed the output produced by the
general-purpose recognizer.

In the above example, we have seen how the over-segmentation veri�er eliminated
the confusion presented in Figure 23a. Since the over-segmented pieces of the second
segmentation hypothesis were penalized, the �rst segmentation hypothesis, which is
the correct one, got a higher �nal probability.
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4.5 Hypothesis Generation

A formal technique for �nding a best single state sequence is the Viterbi algorithm
[37]. The Viterbi algorithm is a form of dynamic programming, and a trellis structure
e�ciently implements the computation. However, in many cases, a considerable
performance improvement can be obtained if the knowledge of the globally second
best path, the third best path, etc., can be utilized in subsequent postprocessing. In
order to produce an ordered list of the best L best paths, we have used a modi�ed
Viterbi algorithm, which was proposed in [21]. This algorithm was �rst applied in
an HMM-context, therefore, some modi�cations must be made to cope with our
problem. Since all aij (state transition probability) terms are equal, we can omit
these terms as well as the initial state probability term π. The term bi(k) stands for
our segmentation-recognition graph (e.g. Figure 28c), T is the number of connected
components (CC) of the image, and N can be calculated as follows:

N = max
1≤i≤T

[#seg. hypotheses of CCi ×#rec. hypotheses]

As it can be observed from Figure 28b, we have considered just rank-2 hypotheses
of recognition (i.e., #rec. hypothesis = 2) for each segmentation hypothesis, since
the classi�er very often produces the correct answer in rank-1 and 2. Thus, for the
example depicted in Figure 28, N = 4.

In order to produce an ordered list of the best L state sequences, Chen et al [21]
propose two main modi�cations on the Viterbi algorithm. The �rst one, is to extend
the Ψ (survivor terminating in it) and δ (survivor score in it) to another dimension
where the extra dimension represents the choice L. So for the recursion at time t,
we need to consider all the possible δt−1(i, l) and record the L best path and its
probability in Ψt(j, l), δt(j, l) for l = 1, 2, . . . , L, respectively. At the end, the overall
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globally L best path probabilities must be in {δT (i, l), 1 ≤ i ≤ N, 1 ≤ l ≤ L} and can
be trace back by following the corresponding Ψt(i, l), t = T, T − 1, . . . , 1. The second
one consists in using a structure that, for each node of the graph, describes all the
paths already computed going trough this node. Once the lth best path has been
backtracked, for each of the nodes in this backtracked path, a counter (count(i, t))
is incremented by one. Then, starting from the �rst node (t = 1), we �nd the
count(i, t)th maximum for the ith node at time t of this backtracked path. After
this forward pass, the (l + 1)th globally optimal path can be found by checking the
score of the terminal nodes.

The modi�ed Viterbi algorithm is described as follows:

• Step 0) Storage:

t time index
c iteration index
Ψt(i, l), 1 ≤ t ≤ T, 1 ≤ i ≤ N, 1 ≤ l ≤ L survivor terminating in it

δt(i, l), 1 ≤ t ≤ T, 1 ≤ i ≤ N, 1 ≤ l ≤ L survivor score in it

count(i, t), 1 ≤ i ≤ N, 1 ≤ t ≤ T count of passes allowed at node it

• Step 1) Initialization:
δ1(i, 1) = bi(1) for 1 ≤ i ≤ N

δ1(i, l) = 0 for 1 ≤ i ≤ N, 2 ≤ l ≤ L

Ψ1(i, l) = (0, 0) for 1 ≤ i ≤ N, 1 ≤ l ≤ L

count(i, t) = 1 for 1 ≤ i ≤ N, 1 ≤ t ≤ T

c = 1

• Step 2) Pre-recursion: For 2 ≤ t ≤ T, 1 ≤ j ≤ N
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Figure 28 Generation of global hypotheses: (a) Original image, (b) Segmentation
hypotheses with rank-2 hypotheses of recognition, and (c) Three best
paths.

δt(j, 1) = max
1≤i≤N

[δt−1(i, 1)]bj(t)

Ψt(j, 1) = arg max
1≤i≤N

[δt−1(i, 1)]

• Step 3) Backtracking:
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P ∗ = (c− th) max
1≤i≤N,1≤l≤count(i,T )

[δT (i, l)]

(i∗T , l∗T ) = arg(c− th) max
1≤i≤N,1≤l≤count(i,T )

[δT (i, l)]

count(i∗T , T ) = count(i∗T , T ) + 1

where (c− th) max[·] denotes the cth maximum.

If t = T − 1, T − 2, . . . , 1

(i∗t , l
∗
t ) = Ψt+1(i

∗
t+1, l

∗
t+1)

count(i∗t , t) = count(i∗t , t) + 1

If I∗ = {i∗1i∗2 . . . i∗T}, the cth optional state sequence satis�es the given criteria
or the index c exceeds limit, exit. Otherwise, continue.

• Step 4) Forward-tracking: for t = 2, 3, . . . , T

l = count(j∗t , t)

δt(j
∗
t , l) = (lth) max

1≤i≤N,1≤m≤count(i,t−1)
[δt−1(i,m)]bj∗t (t)

Ψt(j
∗
t , l) = arg(lth) max

1≤i≤N,1≤m≤count(i,t−1)
[δt−1(i,m)]

increase c by 1;

repeat Step 3.

Figure 28 shows the three best hypotheses of segmentation-recognition. Since the l

best hypotheses are computed incrementally, we obtain a list of decreasing probabil-
ities (Figure 28c). Once the list of hypotheses has been generated, it is submitted to
the post-processor module which veri�es whether it satis�es the application rules or
not.
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4.6 Post-Processor (PP)

In order to improve the overall performance of the system, all the hypotheses gen-
erated by the recognition module should be analyzed syntactically. Compared with
the legal amount, the grammar for numerical amount is not very rich. Consequently,
all the syntactic rules must be based on the non-numerical symbols found in the
numerical amount.

In spite of the fact that numerical amounts produce a poor grammar, we can �nd in
the literature various works that use some kind of syntactic analysis. Knerr et al. in
[80] consider the segments below the baseline in order to obtain the �nal interpre-
tation of the numerical amount. Dimauro et al in [32] use non-numerical symbols
such as �#� in order to identify the beginning and the end of the numerical amount.
Heutte et al in [61] present a post-processing module for French bank cheques, which
takes into account speci�c non-numerical symbols such as the characters �F� and
�C�.

Usually in Brazil, two delimiters (�#�) are a�xed at the beginning and at the end of
the numerical amount, a period �.� is sometimes used to delimit a 3-tuple of digits
and a comma �,� is used to identify the cents portion in the numerical amount. In
addition to these rules, the Central Bank of Brazil decided that the cents portion
should be present in the numerical amount [7]. In order to deal with such rules
we have developed a deterministic automaton which is associated with the term
P (M, V ) of Equation 2.10. This automaton is depicted in Figure 29.

Once such an automaton is formed, we �t it to the probabilistic model in the following
way: if the current hypothesis is veri�ed by the automaton, then P (M, V ) = 0.99,
otherwise P (M,V ) = 0.01. These values aim at re-ranking the list of hypotheses
generated previously. Consider for example the list of hypotheses (a) presented
in Table VII where the correct hypothesis is the second one (140,00). Since the
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Figure 29 Syntactic graph used to carry out the syntactic analysis, where N stands
for noise such as �#�, 0 for the digit �0�, S for separators �.� and �,�, i for
the digits ranging from 1 to 9, and d for the digits ranging from 0 to 9.

automaton did not verify the �rst hypothesis of the original list, its probability will
be multiplied by 0.01 while the probabilities of others will be multiplied by 0.99. List
(b) of Table VII shows the decreasing probabilities after post-processing.

Table VII

(a) The original list of hypotheses and (b) the list after post-processing.

(a)Original list of hypotheses (b)List after post-processing
Hypothesis Probability Hypothesis Probability
1#0,00 0.95 140.00 0.892
140,00 0.90 170.00 0.792
170,00 0.80 1#0.00 0.009

It is worthy of remark that we just choose a value near 1 (0.99 in this case, but it
could be 1) to con�rm the hypotheses veri�ed by the automaton and a value near to
0 to penalize those not veri�ed. We just do not use 0 because we opted to keep all
hypotheses generated by the system in the �nal list. An e�cient and very often used
strategy for post-processing is to estimate P (M, V ) from some data. For example,
Lethelier et al in [96] use an ergotic HMM model to express P (M, V ). It was possible
because they had a real and huge database to train such a model. In our case, we
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are working with a laboratory database where the probability of occurrence of all
amounts is the same. For example, the fact that very small amounts and very large
amounts are less likely on cheques does not happen in our database. Moreover,
we are dealing with a small database (about 1,300 images in the training set) and
consequently it is impossible to model all variability of the numerical amount from
such a small data.

4.7 Global Decision

The global decision module decides either to accept the recognition result or reject
it. The goal of rejection is to minimize the number of recognition errors for a given
number of rejects. A direct scheme of rejection is to reject the image that has a
global probability less than a determined threshold. However, due to the probabilistic
model used, a 10-digit string usually supplies a global probability smaller than a 2-
digit string. Among the di�erent strategies that we have tested, the one proposed
by Fumera et al [42] provided a better error-reject trade-o� for our system.

Basically, this technique suggests the use of multiple reject thresholds for the di�erent
data classes (T0, . . . , Tn) to obtain the optimal decision and reject regions. In order
to de�ne such thresholds we have developed an iterative algorithm, which takes into
account a decreasing function of the thresholds variables R(T0, . . . , Tn) and a �xed
error rate Terror. We start from all threshold values equal to 1, i.e., the error rate
equal to 0 since all images are rejected. Then, at each step, the algorithm decreases
the value of one of the thresholds in order to increase the accuracy until the error
rate exceeds Terror. The error rate is de�ned in Equation 5.2.

Thereafter, the rejection of an image is straightforward. We just compare the proba-
bility of the components, which are recovered by backtracking the best path produced
by the Viterbi algorithm, with their correspondent threshold. If any of the compo-
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nents has the probability less than its correspondent threshold, the entire string is
rejected, otherwise it is accepted.

P(1) P(3) P(7) P(9) P(6)
0.99 0.95 0.98 0.99 0.99

(a)

T1 T3 T7 T9 T6

(b)

(c)

Figure 30 Rejection mechanism: (a) Digit string, (b) Probability of each compo-
nent, and (c) Thresholds for the di�erent classes.

Figure 30 exempli�es the global decision. In such a case, the string will be accepted if
P (1) > T1, P (3) > T3 and so forth. We will see in the next section that this strategy
of rejection produces interesting error-reject trade-o�s. We will present experiments
considering di�erent Terror.

4.8 Summary

In this chapter, the Recognition and Veri�cation strategy has been described in
detail. We have seen that it is composed of three modules. A general-purpose
recognizer that assigns a given input to one of the n existing classes of the system,
and two veri�ers which were especially developed to evaluate precisely the result of
the recognizer in order to compensate for its weakness due to particular training, and
consequently to make the whole system more reliable. Afterwards, the way that the
general-purpose recognizer interact with the veri�ers was discussed. Finally, we have
presented how the results produced by the Recognition and Veri�cation strategy are
used in order to generate all possible segmentation-recognition hypotheses, how they
are post processed and the mechanism used to make an accept/rejection decision.
In the next chapter we shall see the experiments we have carried out in order to
demonstrate the e�ciency of the system described so far.



CHAPTER 5

EXPERIMENTAL RESULTS

In order to validate the concept of modular system as well as to show the robustness of
our system, we ran experiments on two databases. The �rst database is composed of
2,000 images of numerical amounts and it aims at evaluating the performance of the
system on recognition of numerical amounts on Brazilian bank cheques. The second
database is the NIST SD19 (hsf_7 series) and it aims at validating the concept of
modular system as well as to show the robustness of our system on a well-known
database (see Appendix 1). For all reported results we used the following de�nitions
of the recognition rate, error rate, rejection rate, and reliability rate. Let B be a test
set with NB string images. If the recognition system rejects Nrej, classi�es correctly
Nrec, and misclassi�es the remaining Nerr, then

Recognition Rate =
Nrec

NB

× 100 (5.1)

Error Rate =
Nerr

NB

× 100 (5.2)

Rejection Rate =
Nrej

NB

× 100 (5.3)

Reliability =
Recognition Rate

Recognition Rate + Error Rate × 100 (5.4)

Therefore, the recognition rate, error rate and rejection rate sum up to 100%. Most
of the works in the literature express their results in terms of recognition rate, how-
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ever, for systems applied to real applications this rate is not so relevant. Since real
applications request low error rates, it is much more interesting to show the recogni-
tion rate in relation to a speci�c error rate, which includes implicitly a corresponding
reject rate. This rate also allows us to compute the reliability of the system for a
given error rate (Equation 5.4).

5.1 Experiments on Numerical Amounts

For our experiments a database containing 2,000 images of numerical amounts was
used (see Appendix 1). Most images of this database have a non-numerical symbol
(�#�) a�xed at the beginning and at the end of the numerical amount, a period
�.� to delimit a 3-tuple of digits, and a comma �,� to identify the cents portion in
the numerical amount. This database was divided in the following way: 1,300, 200,
and 500 images for training, validation, and testing respectively. From these three
databases, we extracted 11,400, 2,000, and 4,000 isolated characters for training,
validation, and testing respectively. For all three sets, about 80% of the database
consists of digit images while the rest is composed of non-numerical images (�#�,
�,�, and �.�). Therefore, we have used the numeric part of the databases (80%) to
train e10 and the rest (20%) to train e3. The recognition rates achieved by e10, e3

on the test set were 99.2%, 99.0% respectively (zero-rejection level). Thereafter,
we submitted the training set to e10 and e3, and trained the classi�er e13 with the
outputs provided by e10 and e3 plus the �ve components described in Section 4.1.
e13 achieved a recognition rate of 98.9% on the test set.

As discussed in Section 4.2, the veri�er vo has two outputs: isolated characters and
over-segmentation. In order to train this veri�er, we have used the following data:
8,000 correctly segmented characters, 8,000 naturally isolated characters and 12,000
over-segmented parts, which were generated automatically by the segmentation al-
gorithm through the segmentation of the isolated and touching characters. The �rst
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two parts are devoted to train the �rst class of the veri�er, while the third one is
devoted to train the second class. Therefore, the training set used by vo is composed
of 28,000 samples. The validation and test sets were built in the same manner, and
they have 14,000 samples each. This veri�er reached a recognition rate of 99.40% on
the test set.

Finally, we have built the database for vu. As described in Section 4.3, the task of
such a veri�er is to detect the under-segmentation. Thus, it considers two classes:
isolated characters and under-segmentation. The database used in this case is com-
posed of 9,000 samples, which are divided into 5,000 images of isolated characters
and 4,000 images of touching characters. The validation and test sets were built con-
sidering the same distribution of samples and they are composed of 4,000 samples
each. This veri�er reached a recognition rate of 99.17% on the test set.

After training the classi�er and veri�ers, we carried out some experiments using the
test set of numerical amounts (500 images). The number of characters per image
in this database (average length) is about 9. Figure 31 shows some examples of
numerical amounts on Brazilian bank cheques extracted from our database.

Table VIII shows the recognition rates (zero-rejection level) achieved in four di�erent
con�gurations of the system. A numerical amount image is counted as correctly
classi�ed if all characters composing it are correctly classi�ed. This table allows us
to evaluate all possible con�gurations of the recognition system and also verify the
superiority of the con�guration that considers all system modules. By analyzing the
recognition rates of all system con�gurations, we can notice that the veri�ers and
the post-processor complement each other in some respects, once the post-processor
resolved some problems where the veri�ers failed and vice-versa.

Basically, the post-processor di�erentiates the digits from symbols, e.g., 140,00 con-
fused with 1#0,00. In such a case, the automaton does not accept a symbol between
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#500.000,50#
9087,29

#620.000,52#

#691.502,35

#12928,95#

#35.580,95#

250.159,30

(a)

##1,60##  (#1,60#)

332.263,98 (332.263,93)

7165.501,84#  (#165.501,84#)

842.523,82  (841.513,81)

(b)

Figure 31 Examples of numerical amounts on Brazilian bank cheques: (a) Recog-
nized and (b) Not recognized (the correct string is the one in parenthe-
ses).

Table VIII

Recognition rates (%) for the numerical amounts (zero-rejection level).

System Modules
e13 e13, vo, vu e13, pp e13, vo, vu, pp

34.35 71.51 47.91 77.49

two digits. Considering the last experiment (e13, vo, vu, pp), we divided the total er-
ror of the system into three classes: segmentation, recognition, and veri�cation. The
segmentation errors are caused by under-segmentation, which is due to a lack of basic
points in the neighborhood to the connection stroke [122] (1.9%). The recognition
errors are confusions of the general-purpose recognizer (51.7%), confusion generated
by segmentation e�ects such as ligatures and noises produced by segmentation cuts
(30.8%), and confusions generated by fragmentation (7.6%). The latter occurs when
the system misclassi�es a broken character, which usually are due to natural frag-
mentation caused by the handwriting style (Figure 34c) and noises acquired during
scanning or pre-processing. (Figure 34d).
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In spite of the fact that the veri�ers supplied a remarkable improvement in terms
of recognition rates, they produced a new class of errors, which is related to the
confusion between the isolated and the over-segmented characters (veri�er vo) and
the confusion between the isolated and the under-segmented characters (veri�er vu)
(13.1%). In the next section, we discuss in more detail this kind of errors.

Table IX

Recognition rates (Rec.), Rejection rates (Rej.), and Reliability rates (Rel.) on the
numerical amounts for di�erent error rates.

Error = 0.5% Error = 0.1%
Rec.(%) Rej.(%) Rel.(%) Rec.(%) Rej.(%) Rel.(%)
57.17 42.33 99.13 56.57 43.33 99.82

Since bank cheque systems demand low error rates, we ran two experiments (based
on the con�guration �e13, vo, vu, pp�) where we �xed the error rates at 0.5 and 0.1% re-
spectively. Table IX presents recognition, rejection, and reliability rates at these two
error levels while Figure 32 shows the error-reject trade-o� for the same experiment.

5.1.1 Experiments on NIST SD19

Since this database is composed of digit strings only, all Task Dependent Modules
(grey boxes in Figure 5, Section 2.1.4, Chapter 2) related to the numerical amount
task were removed, except the Post-Processor module, which was changed to verify
the length of the string. Since we are dealing with di�erent handwriting styles
(Brazilian and North American), the general-purpose recognizer, in this case (e10),
over-segmentation veri�er (vo) and under-segmentation veri�er (vu) were re-trained.

In order to train e10, we have used the NIST SD19 in the following way: the training
and validation sets were composed of 195,000 and 28,000 samples from hsf_{0,1,2,3}
respectively while the test set was composed of 60,089 samples from hsf_7. The
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Figure 32 Error rate versus rejection rate for numerical amounts.

recognition rates (zero-rejection level) achieved by e10 were 99.66%, 99.65%, and
99.13% on the training, validation, and test sets respectively. The confusion ma-
trices for both training and test sets are presented in Appendix 3. The veri�ers
were trained using the same methodology and number of samples described in the
previous section. The recognition rates achieved by the over-segmentation and under-
segmentation veri�ers were 99.41% and 99.25% respectively. The experiments using
numeral strings are based on 12,802 numeral strings extracted from the hsf_7 series
and distributed into six classes: 2_digit (2,370), 3_digit (2,385) 4_digit (2,345),
5_digit (2,316), 6_digit (2,316) and 10_digit (1,217) strings respectively. These
data exhibit di�erent problems such as touching and fragmentation and they have
also been used as a test set by Britto Jr. et al [14].

Table X summarizes the results for these experiments. In this table we can see
the performance at the zero-rejection level for four di�erent versions of the system.
These results aim at showing the importance and contribution of each module to
the global system. For the second experiment, which does not consider the post-
processor module (number of digits) we present also the performance at three error
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Table X

Recognition rates for the NIST experiment.

String No. of System Modules - (zero-rejection level) Error Rate (e10, vo, vu)
Length Strings e10 e10, vo, vu e10, pp All 2% 1% 0,5%

2 2370 91.56 96.88 96.41 97.21 96.08 94.93 93.88
3 2385 87.98 95.38 94.37 95.80 92.89 90.60 89.84
4 2345 84.91 93.38 91.96 94.11 88.18 85.78 84.36
5 2316 82.00 92.40 91.06 93.22 87.01 84.77 82.44
6 2169 85.66 93.12 94.12 95.90 88.16 85.68 84.03
10 1217 78.97 90.24 89.56 91.07 80.42 77.85 75.20

levels: 2, 1, and 0.5%. By comparing the two �rst experiments, we can observe
the e�ciency of the proposed veri�ers on the NIST database, as well as conclude
that such veri�ers clearly improve the performance of the system. Figure 33a shows
the behavior for strings of di�erent lengths (from 2 to 10 digits) while Figure 33b
exhibits the error-reject trade-o� for all used �elds in the test set.
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Figure 33 Error rates versus rejection rates for the NIST database: (a) Error-reject
trade-o� for strings of di�erent lengths and (b) Error-reject trade-o� for
all used �elds in the test set.
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By analyzing the system errors, we observed that they could be classi�ed into four
classes: confusions generated by e10 (67.8%), errors caused by segmentation (9%),
errors caused by fragmentation (10.6%), and confusions generated by the low-level
veri�ers vo and vu (12.2%). Table XI summarizes these sources of errors as well as
its frequency per string size. We can read this table in the following way. For 2-digit
strings, we have detected 74 errors, which correspond to a global error rate of 3.12%.
These errors are divided into the following: 43 due to the general-purpose recognizer,
15 to low-level veri�ers, 9 to segmentation, and 7 to fragmentation.

Table XI

Distribution of the system errors.

String G-P. Recognizer Segmentation Fragmentation Veri�ers Total
Length Errors % Errors % Errors % Errors % Errors %
2 43 1.81 9 0.38 7 0.29 15 0.64 74 3.12
3 78 3.26 9 0.38 8 0.33 15 0.64 110 4.61
4 104 4.46 17 0.73 13 0.56 20 0.86 154 6.61
5 126 5.43 14 0.60 25 1.08 11 0.48 176 7.59
6 98 4.49 13 0.59 8 0.37 31 1.42 150 6.87
10 89 6.73 9 0.68 23 1.74 8 0.60 129 9.75

The �rst class, which is the most frequent one, is related to the weakness of the
general-purpose recognizer but also the di�cult cases found in the test database
as shown in Figure 34a. In this case, the digits 8 and 9 were classi�ed as 6 and
7 respectively. The second class of errors is caused either by under-segmentation
(20%), which is due to a lack of basic points in the neighborhood to the connection
stroke, or e�ects generated by the segmentation algorithm such as ligatures (80%)
which can be visualized in Figure 34b. The third class of errors is produced when
the grouping algorithm fails. Usually it happens to images with poor quality (Figure
34d and sometimes images composed of two strokes (Figure 34c)).
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(a) (b) (c) (d) (e)

Figure 34 Di�erent classes of errors generated by the system: (a) Recognition er-
rors, (b) Ligature between two digits, (c) Natural fragmentation, (d)
Fragmentation caused by noise, and (e) Isolated digits classi�ed as
under-segmentation by vu.

The last class of errors is produced by the low-level veri�ers, where vu is responsible
for 87% and vo for 13% of the veri�cation errors. The most frequent confusions
generated by vu are related to speci�c con�gurations of the digits �6�, �0�, and �8�
(Figure 34e). In such cases, the digits have strong concavities and often they are
damaged by pre-processing tools. Figure 35a shows some examples of misclassi�ed
images while Figure 35b shows examples of images containing touching or broken
characters that were correctly recognized by the system.

As we can notice, the part of the system that produces more errors is the general-
purpose recognizer e10. In order to reduce such errors and make the overall system
more reliable, our next e�orts will be focused on it.

5.2 Discussion and Comparison

So far, we have described all system modules and how they interact with each other
in order to make the entire system more reliable. We have also presented experi-
ments on two di�erent databases. We have shown that the low-level veri�ers have
brought remarkable improvements to the recognition system. We have seen that
the modular framework proposed is suitable to process numerical �elds in di�erent
applications. Thus, the results reported on numerical amounts and NIST database
have been carried out using an identical system with the following exceptions: the
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Figure 35 Examples of digit strings (NIST SD19): (a) Not Recognized (the correct
string is the one in parenthesis) and (b) Recognized.

optimization of the parameters for digit detection and grouping was carried out on
di�erent databases and the classi�ers were trained on di�erent databases as well.

As stated in Chapter 1, comparison with published methods is very delicate when
we consider bank cheque recognition systems, since di�erent databases and formats
are used, di�erent non-numerical classes are involved, and di�erent sizes of databases
are considered. For example, Lethelier et al [96] present a system for French bank
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Table XII

Recognition rates on NIST databases reported by other authors

Authors String Number of Zero-rejection Error Rate
Length tested strings Level 2% 1% 0,5%

Ref. [55] 2 981 96.20 94.50 93.50 91.50
3 986 92.70 86.00 79.50 70.50
4 988 93.20 86.50 81.00 70.00
5 988 91.10 81.00 77.50 70.50
6 982 90.30 80.50 75.50 66.50

Ref. [95] 2 1000 95.23 - 95.20 -
3 1000 88.01 - 87.90 -
4 1000 80.69 - 80.50 -
5 1000 78.61 - 78.40 -
6 1000 70.49 - 70.20 -

Ref. [14] 2 2370 94.81 - - -
3 2385 91.61 - - -
4 2345 91.25 - - -
5 2316 88.30 - - -
6 2169 89.07 - - -
10 1217 86.94 - - -

cheques, which copes with four non-numerical classes ( �-�, �.�, �,�, �F�). They claim
a recognition rate of 60% (zero-rejection level) on a test set of 10,000 images of
French bank cheques. Kaufmann and Bunke [74] propose a system for Swiss postal
cheques that neither considers non-numerical classes nor the cents portion. The
result achieved by this system is 79.3% (zero-rejection level) and 58.1% with an
error rate of 0.2%.

Regarding the publications using the NIST database a more detailed comparison is
possible. To facilitate this, Table XII reproduces the results of the most performative
recognition systems described in Table III, Chapter 1. A direct comparison can be
made with Ref. [14], once the same database has been used. By comparing the
results reached by our system (Table X) with those reported by other authors (Table
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XII), we can con�rm that our system provides very good recognition rates at zero-
recognition level and a very encouraging error-reject trade-o�.

5.3 Summary

In this chapter we have presented comprehensive experiments on numerical amounts
and NIST SD19 databases in order to support our ideas about modular system and
veri�cation. High recognition rates at zero-rejection level and a very encouraging
error-reject trade-o� have been obtained. Moreover, the results reached by our sys-
tem compare favorably to other published methods. In spite of the fact we have got
good results, we can observe from Table XI that such results can still be improved in
some aspects. Since most of the errors of the system are generated from the general-
purpose recognizer, we decide to dedicate some e�orts to improve its performance.
In the next chapter we discuss some attempts we have made in this direction.



CHAPTER 6

TOWARDS PERFORMANCE

So far, we have described in detail all modules of the system and how they interact
with each other. We have demonstrated through experimentation on two di�er-
ent databases that the proposed strategy of low-level veri�cation brings remarkable
improvements to the recognition system. We also have seen that the modular frame-
work proposed is suitable to process numerical �elds in di�erent applications. Thus,
the results reported on numerical amounts and NIST database have been carried
out using an identical system with the following exceptions: the optimization of the
parameters for digit detection and grouping was carried out on di�erent databases
and the classi�ers were trained on di�erent databases as well.

In spite of the fact the system achieves compelling results, we have seen in the last
chapter that the system still has di�erent sources of errors, where the general-purpose
classi�er is the greatest one. In light of this, we decided to make some e�orts towards
the performance and reliability of the general-purpose recognizer. In this chapter we
discuss three well known and established techniques we have investigated: high-
level veri�cation, feature selection, and ensemble of classi�ers. All the experiments
reported here consider the experts trained on NIST databases. This option was
based on the fact that NIST is a bigger database and very well-known in the �eld of
handwriting recognition.

6.1 High-level Veri�cation

As mentioned elsewhere, the goal of the high-level veri�cation is to con�rm or deny
the hypotheses produced by the general-purpose recognizer by recognizing them. In
this section we discuss two di�erent strategies of high-level veri�cation: absolute and
one-to-one. We will describe how such veri�ers were implemented as well as to show
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their impacts on the numerical string recognition system. All veri�ers discussed in
this section are MLPs (as de�ned in Section 2.1.2).

In order to combine the outputs of the general-purpose classi�er with the high-level
veri�ers we have tried di�erent methods such as average and product. In the case
of the one-to-one veri�er we also have tried to use the output of the veri�er without
any combination. In all our experiments, we have got the best results by using either
average or product, i.e., both combination rules produced very similar results. For
simplicity, in the next subsections we show the results and examples by using the
product rule.

6.1.1 Absolute High-Level Veri�er

In this experiment ten absolute veri�ers (one for each numerical class) were consid-
ered. Each veri�er was trained with two classes: digit and digit. For example, for
the veri�er of the digit class �0�, we have used all zeros of the training set (19,500
samples) for the digit class and the same number of other digits for the digit class.
We have tried di�erent feature sets such as concavity analysis in 8-Freeman direc-
tions, and Moments [68], Edge Maps [25], and histograms. The feature set that
produced better results in terms of recognition rates was the same one used by the
general-purpose recognizer. Table XIII shows the recognition rates reached by each
absolute high-level veri�er.

The idea behind these veri�ers is to con�rm or deny the hypotheses yielded by the
general-purpose recognizer. For instance, suppose that the main classi�er provided
the correct result in the second position of the list (top-2). In this case, if top-1
is denied by the veri�er and top-2 is con�rmed, the list could be re-ranked so that
top-2 becomes top-1. This idea is exempli�ed in Figure 36, where �top-1:0(0.55)�
means that the classi�er recognized the input pattern as a �0� with a measurement
level (or estimation of posteriori probability) of �0.55�.
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Table XIII

Recognition rates achieved by the absolute high-level veri�ers.

Class RR (%) Class RR (%)
0 99.66 5 99.66
1 99.08 6 99.50
2 99.58 7 99.84
3 99.20 8 99.28
4 99.80 9 99.10

General-
purpose

recognizer

top-1:0 (0.55)
top-2:8 (0.45)

8

Verifier 8

0(0.3)Verifier 0

8(0.95)

8(0.43)

0(0.16)

Figure 36 Absolute veri�ers.

We have observed that this strategy of veri�cation produces an improvement to
naturally isolated digits, however, when the system faces problems such as touching
and fragmentation, it does not seem very appropriate.

Table XIV presents the results on the di�erent string lengths we are working with. As
we can see, the overall performance achieved for numeral strings by the system that
considers the absolute veri�ers is almost the same than that reached by the original
system for zero-rejection level. However, when dealing with error rates �xed at low
level (e.g. 0.5%) this strategy is much worse. In spite of the fact that this scheme
of veri�cation succeeds in correcting some errors, it also decreases the probabilities
since the �nal result is the product of probabilities. This makes the implementation
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of a rejection scheme more di�cult, i.e., more correctly classi�ed samples will be
rejected in order to achieve a low error rate.

Table XIV

Performance of the system on strings of digits using high-level veri�ers.

String No. of Original System Absolute Veri�er One-to-One Veri�er
Length Strings RR Error RR Error RR Error

(%) at 0.5% (%) at 0.5% (%) 0.5%
2 2370 96.88 93.88 96.65 88.60 96.10 88.60
3 2385 95.38 89.84 95.03 84.90 94.98 83.79
4 2345 93.38 84.26 92.97 77.62 92.91 76.13
5 2316 92.40 82.44 92.01 75.50 91.03 75.29
6 2169 93.12 84.03 92.60 76.42 91.77 75.90
10 1215 90.24 75.20 89.51 63.19 89.00 62.80

6.1.2 One-to-One High-Level Veri�er

The second strategy of high-level veri�cation that we have implemented was the one-
to-one veri�er. Such a strategy is straightforward and makes it easy to concentrate on
the local di�erence between two classes. In order to determine the main confusions of
the general-purpose recognizer, we carried out an error analysis on the validation set
of isolated digits and we observed 39 di�erent confusions (theoretically, the number
of possible confusing digit pairs is 10×9/2 = 45). Theoretically, we could solve 75.0%
and 62.7% of all errors focusing on the top-39 and top-20 confusions, respectively.
Therefore, it seems more cost e�ective focusing on top-20 confusions, since we have
to deal with about 50% of the confusions produced by the system. Table XV presents
top-20 confusions with their respective frequencies.

We trained each veri�er with 39,000 samples (19,500 for each class of digit involved)
using the same feature set that we have used for our general-purpose recognizer.
For these veri�ers we have tried the same feature sets we have experimented in the
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Table XV

Top 20 digit confusion with frequencies

Confusion Frequency Confusion Frequency
8-0 48 7-1 17
3-2 40 9-5 17
2-1 29 7-2 16
4-0 28 9-8 15
7-3 28 8-2 15
9-7 28 6-4 14
9-4 27 6-5 12
5-3 22 8-5 11
6-0 22 9-0 11
8-3 22 8-4 10

previous section, and again, the one that brought better results was the same one
used by the general-purpose recognizer. The manner that such veri�ers work is
depicted in Figure 37. It can be observed that, when there is a veri�er related to
the top-2 outputs of the general-purpose recognizer, it will try to re-rank them in
order to get the correct answer. If there is not such a veri�er, the system assumes
the output yielded by the general-purpose recognizer. In this example, the main
recognizer misclassi�ed an image, which belongs to the class �9�, but the veri�er
succeed in re-ranking the output of the recognizer to get the right answer. The idea
here is similar to the absolute veri�er, but instead of using two di�erent veri�ers,
in this case just one veri�er is considered. The results achieved by this strategy for
di�erent string lengths are reported in Table XIV.

The performance here is slightly worse than that reached by the system with absolute
veri�ers. By analyzing some errors, we have noticed that this strategy did not succeed
in correcting the main confusions, but caused some other misclassi�cations instead.
In order to enhance the results supplied by this strategy, it will be necessary to
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Figure 37 One-to-one veri�er.

improve the veri�er training set by including misrecognized samples. The di�culties
of implementing such a solution lie in two points:

• Lack of samples to improve the database. If we consider our most frequent
confusion (8-0), we have just 48 cases.

• If we include a few misrecognized samples in the training set of the veri�er,
probably we will introduce noise to our models. We can visualize this problem
from Figure 38.

Figure 38 Misrecognized samples: 8 confused with 6 and 9 confused with 7.

6.1.3 Discussion

We have described two di�erent strategies of high-level veri�cation in order to im-
prove the recognition rate of the system. As we can notice, both strategies (absolute
and one-to-one) do not achieve satisfactory results on numeral strings. Nevertheless,
they seem to be very e�ective when either there is a diversity of samples (confusions)
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to train the veri�ers or when the system has a weak general-purpose recognizer, e.g.,
the system presented by Britto Jr. et al in [14].

One strategy could be the �nding of di�erent feature sets to feed the high-level
veri�ers. But in this case, the system should overcome the same kind of problems
faced by multi-classi�er systems, e.g., run time ine�ciency and system complexity.
Another solution could be the use of the samples rejected by the general-purpose
recognizer to train the veri�ers. In this way, they would be more specialized on the
di�cult cases. We also have noticed that when the recognition system requires very
low error rates, in addition to the correct classi�cation the veri�ers must also provide
high con�dence levels, otherwise it becomes very di�cult to implement an e�cient
rejection scheme.

6.2 Feature Selection

An important issue in constructing classi�ers is the selection of the best discrimi-
native features. In many applications, it is not unusual to �nd problems involving
hundreds of features. However, it has been observed that beyond a certain point,
the inclusion of additional features leads to a worse rather than better performance.
Moreover, the choice of features to represent the patterns a�ects several aspects of
the pattern recognition problem such as accuracy, required learning time, and the
necessary number of samples.

This apparent paradox presents us with a feature selection problem in automatic
design of pattern classi�ers. Such a problem refers to the task of identifying and
selecting an e�ective subset of features to represent patterns from a larger set of
often mutually redundant or even irrelevant features. This is not a trivial problem
since features are seldom entirely independent. There may be redundancy, where
certain features are correlated so that it is not necessary to include all of them in
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modelling, and interdependence, where two or more features between them convey
important information that is obscure if any of them is included on its own.

In the context of practical applications such as handwriting recognition, feature se-
lection presents a multi-criterion optimization function, e.g. number of features and
accuracy of classi�cation. Genetic algorithms (GAs) o�er a particularly attractive
approach to solve this kind of problems since they are generally quite e�ective in
rapid global search of large, non-linear and poorly understood spaces. It has been
shown that GAs can be applied to general NP-complete problems. Moreover, simul-
taneous allocation of search e�ort to many regions of the search space contributes
the power of GAs. In the last decade, GAs have been largely applied to the fea-
ture selection problem [83, 138, 146, 160]. The approach often combines di�erent
optimization objectives into a single objective function. The main drawback of this
kind of strategy lies in the di�culty of exploring di�erent possibilities of trade-o�
between classi�cation accuracy and di�erent subsets of selected features. In order
to overcome this kind of problem, Emmanouilidis et al [36] propose the use of a
multi-objective genetic algorithm (MOGA) to perform feature selection.

In this section we discuss the use of MOGA as a means to search for subsets of fea-
tures, which contain discriminatory information to classify handwritten digit strings.
The proposed strategy takes into account an e�cient MOGA [147] to generate a set
of alternative solutions and the use of a cross-validation method to indicate the best
accuracy/complexity (number of features) trade-o�. We demonstrate that the cross-
validation is very important when working with a set of alternative solutions and it
can not be neglected as in [36]. The classi�cation accuracy is supplied by MLP in
conjunction with the sensitivity analysis [111]. Such an approach makes it feasible to
deal with huge databases in order to better represent the pattern recognition prob-
lem during the �tness evaluation. Some advantages of the proposed methodology
include the ability to accommodate multiple criteria such as number of features and
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accuracy of the classi�er, as well as the capacity to deal with huge databases in order
to represent well the pattern recognition problem. Moreover, the use of MOGA help
to avoid the phenomenon of premature convergence presented by simple GA.

6.2.1 Related Works

The preliminary works on feature selection started in the early 60s. The approaches
at that time were based on probabilistic measures of class separability and on en-
tropies. In most of the methods the independence of features was assumed and the
features were selected on the basis of their individual merits. Since such methods
ignore the interactions among features, they usually produce unsatisfactory subsets
of features.

In order to perform feature selection taking into account the relationship between fea-
tures, three approaches can be found in the literature [29]: Complete, Heuristic and
Randomized searches. Since complete search over all possible subsets of a feature set
(2N where N is the number of features) is not computationally feasible in practice,
several authors have explored the use of heuristics for feature subset selection, often
in conjunction with branch and bound search. Forward selection and backward elim-
ination are the most common sequential branch and bound search algorithms used in
feature selection [73, 115]. Most of the current approaches assume monotonicity of
some measure of classi�cation performance. This ensures that adding features does
not worsen the performance. However, many practical scenarios do not satisfy the
monotonicity assumption. Moreover, this kind of search is not designed to handle
multiple selection criteria.

Randomized algorithms make use of randomized or probabilistic steps or sampling
processes. Several researchers have explored the use of such algorithms for feature
selection [78, 101] while others have explored the use of randomized population-based
heuristic search techniques such as genetic algorithms for feature selection for decision



94

tree and nearest neighbor classi�er [76, 140, 146] or neural networks [160, 161].
The advantage of feature selection techniques that employ GAs is that they do not
require the restrictive monotonicity assumption. They can also deal with the use
of multiple selection criteria, e.g., classi�cation accuracy, feature measurement cost,
etc. This makes them particularly attractive in the design of pattern classi�ers in
many practical scenarios such as signature veri�cation [136], medical diagnosis [160],
facial modelling [63] and handwriting recognition [76].

Due to the ability of GAs to deal with multi-objective optimization, several authors
have explored them for feature selection for handwritten character recognition [142,
76, 102]. Feature selection using GA is often performed by aggregating di�erent
objectives into a single and parameterized objective, which is achieved through a
linear combination of the objectives. The main drawback of this approach is that it
is very di�cult to explore di�erent trade-o�s between accuracy and di�erent subsets
of selected features.

In order to overcome this kind of problem, Emmanouilidis et al [36] propose the use
of a MOGA to perform feature selection. Notwithstanding that only small databases
were considered in this work, they achieved interesting results.

6.2.1.1 Filter and Wrapper Approaches to Feature Selection

Feature selection algorithms can also be classi�ed into two categories based on
whether or not feature selection is performed independently of the learning algo-
rithm used to construct the classi�er. If feature selection is done independently of
the learning algorithm, the technique is said to follow a �lter approach. Otherwise,
it is said to follow a wrapper approach [73]. While the �lter approach is generally
computationally more e�cient than the wrapper approach, its major drawback is
that an optimal selection of features may not be independent of the inductive and
representational biases of the learning algorithm that is used to construct the classi-
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�er. On the other hand, the wrapper approach involves the computational overhead
of evaluating candidate feature subsets by executing a given learning algorithm on
the database using each feature subset under consideration.

6.2.2 Multi-Objective Optimization using GAs

6.2.2.1 De�nitions

A general multi-objective optimization problem consists of a number of objectives
and it is associated with a number of inequality and equality constraints. Mathe-
matically, the problem can be written as follows [137].

Minimize (or Maximize) fi(x) i = 1, . . . , N

subject to:





gj(x) ≤ 0 j = 1, 2, . . . , J

hk(x) = 0 k = 1, 2, . . . , K
(6.1)

The parameter x is a p dimensional vector having p decision variables. Solutions to
a multi-objective optimization problem can be expressed mathematically in terms
of nondominated or superior points. In a minimization problem, a vector x(1) is
partially less than another vector x(2), (x(1) ≺ x(2)), when no value of x(2) is less
than x(1) and at least one value of x(2) is strictly greater than x(1). If x(1) is partially
less than x(2), we say that the solution x(1) dominates x(2). Any member of such
vectors which is not dominated by any other member is said to be nondominated.
The optimal solutions to a multi-objective optimization problem are nondominated
solutions. They are also known as Pareto-optimal solutions.

For example, in the case of minimization for two criteria,
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Minimize f(x) = (f1(x), f2(x))

such that x ∈ X(the feasible region)

a potential solution x(1) is said to dominate x(2) i�:

∀i ∈ {1, 2} : fi(x
(1)) ≤ fi(x

(2)) ∧
∃j ∈ {1, 2} : fj(x

(1)) < fj(x
(2)) (6.2)

6.2.2.2 Classical Approach

A common di�culty with multi-objective optimization problem is the con�ict be-
tween the objectives: in general, none of the feasible solutions allow simultaneous
optimal solutions for all objectives. In other words, individual optimal solutions
of each objective are usually di�erent. Thus, mathematically the most favorable
Pareto-optimum is that solution which o�ers the least objective con�ict. One of
the most classical methods is the weighted sum. In this strategy, multiple objective
functions are combined into one overall objective F (x) such that:

F (x) =
N∑

i=1

ωifi(x) (6.3)

where x ∈ X, X is the objective space, the weights ωi are fractional numbers (0 ≤
ωi ≤ 1), and ∑N

i=1 ωi = 1. However, setting up an appropriate weight vector also
depends on the scaling of each objective function. It is likely that di�erent objectives
take di�erent orders of magnitude. When such objectives are weighted to form a
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composite objective function, it would be better to scale them appropriately so that
each has more or less the same order of magnitude.

In this method, the optimal solution is controlled by the weight vector ω. It is
clear from the above equation that the preference of an objective can be changed by
modifying the corresponding weight. In most cases, each objective is �rst optimized
and all objective function values are computed at each individual optimum solution.
Afterwards, depending on the importance of objectives, a suitable weight vector is
chosen and the single-objective problem given in Equation 6.3 is used to �nd the
desired solution.

Figure 39 shows an example of this approach where a two-objective problem is con-
sidered. Once the weight vector is de�ned we can calculate the composite function
F . Its contour surface can then be visualized in the objective space, as shown by
lines �a�, �b�, �c� and �d�. Since F is a linear combination of both objectives f1 and f2

we would expect a straight line as the contour line of F on the objective space. This
is because any solution on the contour line will have the same F value. If considered
carefully, this contour line is not an arbitrary one. Its slope is related to the choice
of the weight vector. In fact, for two objectives, its slope is −w1/w2. The location
of the line depends on the value of F on any point of the line. The e�ect of lowering
the contour line from �a� to �b� is in e�ect jumping from solutions of higher F values
to a lower one.

In a minimization problem, the task is to �nd the contour line with the minimum F

value. This happens with the contour line which is tangential to the search space and
also lies in the bottom-left corner of this space. In Figure 39 this line is represented
by �d�. The tangent point �A� is the minimum solution of F , and is consequently
the Pareto-optimal solution corresponding to the weight vector.
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Figure 39 Illustration of the weighted sum approach on a convex Pareto-optimal
front [30].

The only advantage of using this technique is the emphasis of one objective over
the other. As we have seen, the optimization of the single objective may guarantee
a Pareto-optimal solution but results in a single point solution. However, in real
world situations we usually need di�erent alternatives in order to make a decision.
Moreover, if some of the objectives are noisy or have a discontinuous variable space,
this method may not work properly. The main drawback of this approach is its sen-
sitivity towards weights, i.e., the solution obtained largely depends on the underlying
weight vector.

Deb in [30] mentions further potential problems with these approaches, i.e., appli-
cation areas where their use is restricted. Moreover, this kind of method requires
several optimization runs to obtain an approximation of the Pareto-optimal set. As
the runs are performed independently from each other, usually synergies can not be
exploited which, in turn, may create a high computation overhead.
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6.2.2.3 Pareto-based Approach

In order to overcome the di�culties mentioned above, Pareto-based evolutionary op-
timization has become an alternative to classical techniques such as weighted sum
method. This approach was �rst proposed by Goldberg in [48] and it explicitly uses
Pareto dominance to determine the reproduction probability of each individual. Ba-
sically, it consists of assigning rank 1 to the nondominated individuals and removing
them from contention, then �nding a new set of nondominated individuals, ranked
2, and so forth. Figure 40 depicts the ranking by fronts.

Pareto-based ranking correctly assigns all nondominated individuals the same �tness,
however, this does not guarantee that the Pareto set is uniformly sampled. When
presented with multiple equivalent optima, �nite populations tend to converge to
only one of them, due to stochastic errors in the selection process. This phenomenon,
known as genetic drift, has been observed in natural as well as in arti�cial evolution,
and can also occur in Pareto-based evolutionary optimization.
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Figure 40 Ranking of a population by fronts.

In order to avoid such a problem, Goldberg and Richardson in [49] propose the
additional use of �tness sharing. The main idea behind this is that individuals in
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a particular niche have to share the available resources. The more individuals are
located in the neighborhood of a certain individual, the more its �tness value is
degraded. In the following section we present the Pareto-based algorithm we have
used as well as an implementation of the sharing function.

6.2.2.4 Nondominated Sorting Genetic Algorithm (NSGA)

Over the past decade, a number of multi-objective evolutionary algorithms have
been proposed. Zitzler et al in [168] provide a systematic comparison of various
evolutionary approaches to multi-objective optimization using six carefully chosen
test functions. In this work, they found that NSGA (with elitism) proposed by
Srinivas and Deb in [147] surpasses several other methods. Besides, such a method
has been applied to solve various problems [110, 158]. For these reasons we opted to
use such an algorithm in our study.

The idea behind the NSGA is that a ranking selection method is used to empha-
size good points and a niche method is used to maintain stable subpopulations of
good points. It di�ers from simple GA only in the way the selection operator works.
The crossover and mutation remain as usual. Before the selection is performed, the
population is ranked based on an individual's nondomination. The nondominated
individuals present in the population are �rst identi�ed from the current population.
Then, all these individuals are assumed to constitute the �rst nondominated front in
the population and assigned a large dummy �tness value. The same �tness value is
assigned to give an equal reproductive potential to all these nondominated individu-
als. This is exempli�ed in Figure 41a. In such a case, a population of six individuals
was classi�ed into three nondominated fronts and each individual of the �rst front
received a large dummy �tness (6.00 in this example).

In order to maintain the diversity in the population, these classi�ed individuals are
then shared with their dummy �tness values. Sharing is achieved by performing
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Figure 41 Sorting population: (a) The population is classi�ed into three nondom-
inated fronts and (b) Shared �tness values of six solutions.

selection operation using degraded �tness values obtained by dividing the original
�tness value of an individual by a quantity proportional to the number of individuals
around it. After sharing, these nondominated individuals are ignored temporarily
to process the remaining population in the same way to identify individuals for the
second nondominated front. These new sets of points are then assigned a new dummy
�tness which is kept smaller than the minimum shared dummy �tness of the previous
front. This process is continued until the entire population is classi�ed into several
fronts. This process is illustrate in Figure 41b. It can be observed from this Figure
that the individuals �1� and �3� had their �tness shared because they are close to
each other. In this case, their �tness were reduced from 6.00 to 4.22. Then, the
dummy �tness is assigned to the individuals of the second front by multiplying the
lowest value of the �rst front by a constant k (let us say k = 0.95 for this example).
Therefore, the individuals of the second front will receive a dummy �tness of 4.00
(4.22 × 0.95). Since the two individuals of the second front are not close to each
other, their dummy �tness is maintained and a dummy �tness is assigned to the
individual of the last front (4.00× 0.95 = 3.80).
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The population is then reproduced according to the dummy �tness values. Since in-
dividuals in the �rst front have the maximum �tness value, they get more copies than
the rest of the population. This was intended to search for the nondominated regions
of Pareto-optimal fronts. The e�ciency of NSGA lies in the way multiple objectives
are reduced to a dummy �tness function using nondominated sorting procedures.

Start
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population

gen=0
Front = 1

Is
the population
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 ?
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 non-dominated

individuals

Assign dummy
fitness

Sharing in
current front

front = front + 1
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Figure 42 Flow chart of NSGA.

Figure 42 shows a �ow chart of NSGA. The algorithm is similar to a simple GA
except for the classi�cation of nondominated fronts and the sharing operation. The
sharing in each front is achieved by calculating a sharing function value between two
individuals in the same front as:

Sh(d(i, j)) =





1−
(

d(i,j)
σshare

)2 if d(i, j) < σshare

0 otherwise
(6.4)

where d(i, j) is the distance between two individuals i and j in the current front
and σshare is the maximum distance allowed between any two individuals to become
members of a niche. In any application of sharing, we can implement either genotypic
sharing, since we always have a genotype (the encoding), or phenotypic sharing.
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However, Deb and Goldberg in [31] indicate that in general, phenotypic sharing is
superior to genotypic sharing. Thus, we have used a phenotypic sharing which is
calculated from the normalized Euclidean distance between the objective functions.

The parameter σshare can be calculated as follows [31]:

σshare ≈ 0.5
p
√

q
(6.5)

where q is the desired number of distinct Pareto-optimal solutions and p is the number
of decision variables. Although the calculation of σshare depends on this parameter
q, it has been shown [147] that the use of the above equation with q ≈ 10 works in
many test problems.

6.2.3 Proposed Methodology

Basically the proposed methodology works as follows: NSGA produces a set of solu-
tions, called Pareto-optimal, which is validated through a second validation set not
used during the learning of the classi�er. Based on the validation curve, we pick one
solution and thereafter train it to obtain a new optimized classi�er. In the follow-
ing subsection, we describe in details the proposed methodology, which is depicted
in Figure 43. We can notice from this Figure that the strategy takes as input one
model, which is associated to a feature set, and produces as output another model
associated to an optimized feature set.

6.2.3.1 Implementation of NSGA

In our experiments, NSGA is based on bit representation, one-point crossover, bit-
�ip mutation and roulette wheel selection (with elitism). The following parameter
settings were employed:
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Figure 43 Flow chart of the proposed methodology.

• Population size: 128

• Number of generations: 1000

• Probability of crossover (Pc): 0.8
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• Probability of mutation (Pm): 0.007

• Niche Distance (σshare): 0.45

In order to de�ne the probabilities of crossover and mutation, we have used the one-
max problem, which is probably the most frequently-used test function in research
on GAs because of its simplicity [19]. This function measures the �tness of an
individual as the number of bits set to one on the chromosome. We have used a
standard GA with a single-point crossover and the maximum generations of 1000.
The �xed crossover and mutation rates are used in a run, and the combination of
the crossover rates 0.0, 0.4, 0.6, 0.8 and 1.0 and the mutation rates of 0.1/L, 1/L

and 10/L, where L is the length of the chromosome. The best results were achieved
with Pc = 0.8 and Pm = 1/L. All these experiments are reported in [8]. Such results
con�rmed the values reported by Miki et al in [109]. The parameter σshare was �rst
de�ned using Equation 6.5, then it was tuned empirically.

As discussed elsewhere, our goal is to �nd the best accuracy/complexity trade-o�
for the classi�er. This means that two objectives must be considered: minimization
of the number of features and minimization of the error rate of the classi�er on the
validation set. Computing the �rst one is simple, i.e., the number of selected features
( bit = 1). The problem lies in computing the second one, i.e., the error rate supplied
by the classi�er. Regarding a wrapper approach, in each generation, evaluation of
a chromosome (a feature subset) requires training the corresponding neural network
and computing its accuracy. This evaluation has to be performed for each of the
chromosomes in the population. Since such a strategy is not feasible due to the
limits imposed by the learning time of the huge training set considered in this work,
we have adopted the strategy proposed by Moody and Utans in [111], whom use the
sensitivity measure Si to evaluate the change in training error that would result if
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input xi were removed from the network. The sensitivity of the network model to
variable is de�ned as:

Si =
1

N

∑

j

Sij (6.6)

where Sij is the sensitivity computed for exemplar xj.

Sij = SE(x̄i)− SE(xij) (6.7)

with

x̄i =
1

N

N∑

j=1

xij (6.8)

Si measures the e�ect on the training squared error (SE) of replacing the ith input xi

by its average x̄i for all N exemplars. Moody and Utans show that when variables
with small sensitivity values (Si) with respect to the network outputs are removed,
they do not in�uence the �nal classi�cation. So, in order to evaluate a given feature
subset we replace the unselected features by their averages. In this way, we avoid
training the neural network and hence turn the wrapper approach feasible for our
problem. We call this strategy modi�ed-wrapper. Such a kind of scheme has been
employed also by Yuan et al in [161].

6.2.3.2 Validating the Pareto-optimal front

As depicted in Figure 43, the last step of the strategy consists of choosing the best
solution from the Pareto-optimal front. After several experiments, we realized that
the Pareto-optimal front by itself does not provide enough information to select the
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best solution. Often, the best solution found in the Pareto-optimal front does not
have good generalization power on a di�erent database. In order to overcome this
kind of problem, we propose the use of a validation database, which is not used
during the feature selection procedure, to verify the generalization power of the
Pareto-optimal front.

6.2.4 Experiments

In the following section we report the results achieved by the foregoing methodology
on isolated and strings of digits as well. All experiments in this work were based on
a single-population master-slave MOGA. In this strategy, one master node executes
the genetic operators (selection, crossover, and mutation), and the evaluation of
�tness is distributed among several slave processors. We have used a Beowulf cluster
with 17 (one master and 16 slaves) PCs (1.1Ghz CPU, 512Mb RAM) to execute our
experiments.

6.2.4.1 Experiments on Isolated Digits

The database used to assess the impact of di�erent subsets of inputs during the
feature selection was the same we have employed for validation during of training of
the classi�er (28,000 samples from hsf_0123).

In order to show the limitations of the weighted-sum approach, we �rst tried to
optimize the classi�er using it. As expected, the results achieved by the weighted-
sum approach presented a premature convergence to a speci�c region of the search
space instead of maintaining a diverse population. This kind of behavior can be
explained by the sensitivity towards weight presented by the weighted-sum approach.
Since we have chosen weights to favor solutions with a small error rate rather than a
small number of features, the selection pressure drove the search to the region where
the error rates are smaller. Thus, after several trials using di�erent weights we did
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not succeed in �nding the Pareto-optimal front but rather an approximation of the
Pareto-optimal solutions (Figure 44).
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Figure 44 Feature selection using the weighted-sum approach (a) evolution of the
population in the objectives plane (one trial) and (b) Pareto-optimal
solutions found by the classical approach after several trials.

As we have discussed in Section 6.2.2.3, the Pareto-based approach was designed to
overcome this kind of problem. Since NSGA uses a niching technique to preserve
the diversity in the population, this algorithm is able to deal with the problem of
converging prematurely to a speci�c region of the search space. Therefore, it can
guide the search towards the Pareto-optimal set. Figure 45a depicts the evolution of
the population in the objectives plane from the �rst generation to the last one. This
plot demonstrates the e�cacy of NSGA in converging close to the Pareto-optimal
front with a wide variety of solutions.

As discussed in Section 6.2.3, after �nding the Pareto-optimal front the next step is
to �nd a solution. In order to perform this task we have used the second validation
database (validation-2 � Appendix 1). Figures 45b shows the Pareto-optimal front
as well as its correspondent validation curve, which depicts the performance of the
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Figure 45 Feature selection using a Pareto-based approach (a) Evolution of the
population in the objective plane, (b) Pareto-optimal front found by
NSGA and its correspondent validation curve.

entire Pareto-optimal front on this new validation set. After analyzing the validation
curve, we selected a solution with 100 features (solution signed with an arrow in
Figure 45b) and error rate on the new validation set smaller than 1% to retrain the
general-purpose recognizer.

Thereafter we trained a new classi�er using such a solution. The results are sum-
marized in Table XVI. In order to validate the proposed strategy, we applied it
to other two feature sets, namely, Directional Distance Distribution [118] (hereafter
called Distances for simplicity) and Edge Maps [25]. It should be noted, though,
that the original feature set of Distances proposed by Oh and Suen [118] contains
256 features. After carrying out some experiments with di�erent strategies of zoning,
we realized that using 96 features (6 zones: 3 horizontal and 2 vertical) we could
achieve the same results as using 256 features (16 symmetrical zones). A description
of both feature sets can be found in Appendix 2.
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Table XVI presents a comparison between the original and the optimized classi�ers
for the three di�erent feature sets. It shows that our strategy of feature selection
succeeded in reducing the complexity of the feature set while keeping the recognition
rates of the classi�ers at the same level (for zero-rejection level and also for error
rate �xed at low level � 0.5%).

Table XVI

Comparison between the original and optimized classi�ers.

Feature Original Classi�ers Optimized Classi�ers
Set No. of Rec. Error No. of Rec. Error

Features Rate (%) at 0.5% Features Rate (%) at 0.5%
Concavities 132 99.13 98.50 100 99.16 98.54
Distances 96 98.17 92.80 90 98.21 92.98
Edge Maps 125 97.04 85.10 105 97.10 85.70

6.2.4.2 Experiments on Strings of Digits (1)

In the �rst experiment with strings of digits we just replaced the original classi�er
(e10) by the optimized one presented in the previous section. The idea here is to �nd
out whether the optimized classi�er is good enough to recognize strings of digits.
As discussed before, such a problem is much more complicated than the problem
of naturally isolated digits since the system must face complications such as noise,
fragmentation and touching digits. In order to answer the above question, we have
applied the optimized classi�er to recognize strings of digits. It is worthy of remark
that both low-level veri�ers remain the same. The results of this experiments are
presented in Table XVII.

In a second time we carried out the feature selection for both veri�ers and used them
in the system afterwards. To perform this task, we have used the proposed methodol-
ogy where the databases used to validate the Pareto-front for the over-segmentation
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Table XVII

Performance of the system on strings of digits using the general-purpose classi�er
optimized with isolated digits.

String Original Classi�ers Optimized Classi�ers
Length Rec. Error Rec. Error

Rate (%) at 0.5% Rate (%) at 0.5%
2 96.88 93.88 97.21 94.00
3 95.38 89.84 94.62 89.72
4 93.38 84.36 93.34 84.38
5 92.40 82.44 92.36 82.67
6 93.12 84.03 92.60 83.70
10 90.24 75.20 89.19 74.77

and under-segmentation veri�ers have 7,000 and 2,000 samples respectively. They
were built in the same way we have described in Sections 4.2 and 4.3 . After running
the feature selection we found the solution with 30 and 38 features for the over-
segmentation and under-segmentation veri�ers respectively. The original feature
sets consist of 42 components each one.

After training these optimized veri�ers, we applied them together with the optimized
classi�er to recognize the strings of digits. The recognition rates were kept at the
same level as presented in Table XVII. Considering the three optimized classi�ers
in this experiment, the total features used by the system were reduced from 216
(132+42+42) to 168 (100+30+38), i.e., about 22% less features.

In spite of the fact that the optimized classi�er succeed in keeping the rates at the
same levels as the original system, such a classi�er produced better recognition rates
for strings composed of naturally isolated digits and worse performance for strings
that show problems of touching digits, fragmentation and noise. Therefore, the
improvement found in the former case compensates the problems found in the latter.
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6.2.4.3 Experiments on Strings of Digits (2)

In order to improve the performance of the classi�er globally, i.e. for naturally
isolated digits as well as digits with problems of fragmentation, touching and so
forth, we have performed a new series of experiments. The goal was to select a subset
of features suitable for the problem of strings of digits rather than the problem of
naturally isolated digits. Thus, instead of using a database of isolated digits to assess
the �tness during the feature selection procedure, we used the 3-digit string database
which is composed of 2,385 images. In this manner, problems such as overlapping,
fragmentation and e�ects of segmentation are tackled during the optimization process
and hence relevant features for those problems will not be discarded. The validation
set used to �nd the best solution in the Pareto-optimal front is the 10-digit string
database which contains 1,217 images.

After performing the feature selection for the general-purpose recognizer taking into
account such databases, the best solution we found had 124 selected features, i.e.
it is considerably greater than that presented in the previous section (100 features).
After training such a classi�er and using it to classify strings of digits we perform an
error analysis in order to �nd out whether the optimized classi�er got better results
for strings with problems of touching digits, fragmentation and noise. We veri�ed
that it succeeded in improving the rates for strings with such problems, however, the
rates for strings composed of naturally isolated digits was slightly lower than those
shown in the previous section. Since most of the strings of the NIST database are
composed of naturally isolated digits (about 75%), the slightly worse rates obtained
in this case neutralized the improvement reached for strings with problems. Hence,
the recognition rates of this experiment are almost the same as those of the previous
experiment. Table XVIII reports the performance (0.5% error level) of the classi�er
optimized in the context of strings of digits. The results for 3- and 10-digit strings
were omitted here since we have used such subsets during the optimization process.
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Table XVIII

Performance of the system on strings of digits using the general-purpose classi�er
optimized with strings of digits.

String Original Classi�ers Optimized Classi�ers
Length Rec. Error Rec. Error

Rate (%) at 0.5% Rate (%) at 0.5%
2 96.88 93.88 96.91 93.90
4 93.38 84.36 93.33 84.36
5 92.40 82.44 92.40 82.44
6 93.12 84.03 92.35 83.95

6.2.5 Discussion

In spite of the fact that the Pareto-based approach o�ers several advantages over
the classical one, we have seen through the experiments that both strategies found
similar solutions (see Figures 44b and 45b). In our �rst experiment, we observed that
the classical approach converged the search to the space where the most probable
solutions are located due to the weights we have chosen. However, for problems
where the solutions are located along the Pareto-front, the classical approach does
not work properly. Moreover, to achieve part of the Pareto-front, the weighted-sum
method was run several times with di�erent weight vectors.

For the problem of feature selection for handwriting recognition we can observe
that the main advantage of the Pareto-based approach is the ability of dealing with
di�erent databases without having to deal with problems such as scaling and �nding
the suitable values for the weight vector. Moreover, Pareto-based approaches have
the ability of �nding the Pareto-optimal front in the �rst run of the algorithm.

As we have seen, two di�erent optimized classi�ers were used to recognize strings
of digits. The former was optimized considering a database composed of naturally
isolated digits only while the latter took into account a database of strings of digits.
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Through detailed experiments we have demonstrated that in both cases the optimized
systems attained very similar reliability rates. In the �rst case, the classi�er obtains
slightly better rates for isolated digits and worse rates for strings with problems such
as touching digits, fragmentation and noise while in the second case we observed the
opposite. Since about 75% of the strings of digits of the NIST database consist of
naturally isolated digits, the classi�er optimized in this context, which has about
25% less features than the original classi�er, provided the same reliability rates as
those found in the original system.

Since there is an interdependence between features where two or more features be-
tween them convey important information, it is very di�cult to analyze the unse-
lected features independently. However, analyzing the unselected features of several
runs of the algorithm we could notice the following aspects:

12

34

56
(a)

12

34

56
(b)

Figure 46 Unselected features for handwritten digit recognition: (a) Concavities
and (b) Contour
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1. In most of the solutions we observed that the unselected features of concavity
have a certain symmetry among the zones, e.g. zones 1-6, 2-5 and 3-4 (Figure
46a). Moreover, we can conclude that for this kind of zoning there is a rela-
tionship between the geographic position of the zone and 4-Freeman directions.
For example, in zone 2 (North-East) the unselected concavity con�guration is
the one that searches black pixels in directions North-East. We can notice the
same behavior for the other zones.

2. All unselected features of contour are located just in the right side of the zoning
(Figure 46b) in most solutions. In this case we can assume that such features
are correlated so that it is not necessary to include them in the feature set.

3. The information related to the surface of the image was never unselected. This
means that such an information is relevant to the feature vector we have used.

It is worth to remark that such an analysis is valid for the feature vector described
in Section 4.1. However, it can be a very helpful tool to get a better insight for any
kind of feature vector.

6.3 Ensemble of Classi�ers

Our last e�orts towards performance regard the ensemble of the classi�ers. Such a
strategy has been widely used to reduce model uncertainty and improve generaliza-
tion performance. Developing techniques for generating candidate ensemble mem-
bers is a very important direction of ensemble of classi�ers research. Both theoretical
[57, 81] and empirical [58, 130] research has demonstrated that a good ensemble is
one where the individual classi�ers in the ensemble are both accurate and make
their errors on di�erent parts of the input space (there is no gain in combining iden-
tical classi�ers). In other words, an ideal ensemble consists of good classi�ers (not
necessarily excellent) that disagree as much as possible on di�cult cases.
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The literature has shown that varying the feature subsets used by each member of the
ensemble should help to promote this necessary diversity. While traditional feature
selection algorithms aim at �nding the best trade-o� between features and gener-
alization, the task of ensemble feature selection has the additional goal of �nding
a set of feature sets that will promote disagreement among the component mem-
bers of the ensemble. The random subspace method proposed by Ho in [64] was
one early algorithm that constructs an ensemble by varying the subset of features.
More recently some strategies based on GAs have been proposed [47, 130]. All these
strategies claim better results than those produced by traditional methods for cre-
ating ensembles such as bagging and boosting. In spite of the good results brought
by GA-based methods, they still can be improved in some aspects, e.g., avoiding
classical methods such as the weighted sum to combine multiple objective functions.
We have seen that when dealing with this kind of combination, one should deal with
problems such as scaling and sensitivity towards the weights.

In this section we present a methodology for creating ensembles of classi�ers which
is able to cope with multiple ensembles simultaneously. Such a strategy is based
on a hierarchical MOGA where the �rst level is devoted to generate a set of good
classi�ers while the second one combines these classi�ers in order to �nd an ensemble.
In the following sections we discuss the proposed methodology.

6.3.1 Related Works

Assuming the architecture of the ensemble as the main criterion, we can distinguish
among serial, parallel, and hierarchical schemes, and if the classi�ers of the ensemble
are selected or not by the ensemble algorithm we can divide them into selection-
oriented and combiner-oriented methods [70, 82]. Here we are more interested in the
second class, which try to improve the overall accuracy of the ensemble by directly
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boosting the accuracy and the diversity of the experts of the ensemble. Basically,
they can be divided into resampling methods and feature selection methods.

Resampling techniques can be used to generate di�erent hypotheses. For instance,
bootstrapping techniques [35] may be used to generate di�erent training sets and a
learning algorithm can be applied to the obtained subsets of data in order to produce
multiple hypotheses. These techniques are e�ective especially with unstable learning
algorithms, which are algorithms very sensitive to small changes in the training
data. In bagging [11] the ensemble is formed by making bootstrap replicates of the
training sets, and then multiple generated hypotheses are used to get an aggregated
predictor. The aggregation can be performed by averaging the outputs in regression
or by majority or weighted voting in classi�cation problems.

While in bagging the samples are drawn with replacement using a uniform proba-
bility distribution, in boosting methods [40] the learning algorithm is called at each
iteration using a di�erent distribution or weighting over the training examples. This
technique places the highest weight on the examples most often misclassi�ed by the
previous base learner: in this manner the classi�ers of the ensemble focus their at-
tention on the hardest examples. Then the boosting algorithm combines the base
rules taking a weighted majority vote of the base rules.

The second class of methods regards those strategies based on feature selection. The
concept behind these approaches consists in reducing the number of input features
of the classi�ers, a simple method to �ght the e�ects of the classical curse of di-
mensionality problem. For instance, the random subspace method [64] relies on a
pseudorandom procedure to select a small number of dimensions from a given fea-
ture space. In each pass, such a selection is made and a subspace is �xed where all
points have a constant value (e.g. 0) in the unselected dimensions. All samples are
projected to this subspace, and a classi�er is constructed using the projected training
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samples. In the classi�cation a sample of an unknown class is projected to the same
subspace and classi�ed using the corresponding classi�er. In the same vein of the
random subspace method lies the input decimation method [131], which reduces the
correlation among the errors of the base classi�ers, by decoupling the classi�ers by
training them with di�erent subsets of the input features. It di�ers from the random
subspace as for each class the correlation between each feature and the output of the
class is explicitly computed, and the classi�er is trained only on the most correlated
subset of features.

Recently, several authors have been investigated GA to design ensemble of classi�ers.
Kuncheva and Jain [83] suggest two simple ways to use genetic algorithm to design
an ensemble of classi�ers. They present two versions of their algorithm. The former
uses just disjoint feature subsets while the latter considers (possibly) overlapping
feature subsets. The �tness function employed is the accuracy of the ensemble,
however, no measure of diversity is considered. Gerra-Salcedo and Withley [47]
used a simple GA to explore the space of all possible feature subsets, and then
create an ensemble based on them. In their experiments, this GA-based approach
outperformed classical methods such as Bagging and Boosting. In spite of the fact
they achieved interesting results, they did not consider any measure of diversity.
A more elaborate method, also based on GA, was proposed by Optiz [130]. In
his work, he stresses the importance of a diversity measure by including it in the
�tness calculation. The drawback of this method is that the objective functions are
combined through the weighted sum. It is well known that when dealing with this
kind of combination, one should deal with problems such as scaling and sensitivity
towards the weights.
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6.3.1.1 Measures of Diversity

Since a good ensemble is composed of diverse classi�ers that bring a good gener-
alization, a measure should be considered to quantify such a diversity. Kuncheva
and Whitaker [85] study ten di�erent measures of diversity in classi�er ensemble and
their relationship with the ensemble accuracy. They conclude that the measures of
diversity should not be a replacement of the estimate of the accuracy of the ensemble
but should stem from the intuitive concept of diversity. They also demonstrate that
there is no agreement on a �best� measure of diversity in the literature.

Perhaps, the simplest metric for determining the diversity of the classi�cation de-
cision of a set of classi�ers is �classi�cation overlap� [15]. To compute the overlap
among a set of classi�ers requires counting the number of instances that were classi-
�ed the same way by each of the classi�ers, including instances that were classi�ed
incorrectly by all classi�ers. To measure the diversity of a set of classi�ers we can
look at their classi�cation overlap: a set of classi�ers S1 is more diverse than another
set S2 if overlap(S1) < overlap(S2).

Cunninghan and Carney [28] argue that the entropy is a good measure of diversity.
For a test set of M samples where there are K classes a measures of entropy is:

E =
1

N

1

M

M∑

x=1

K∑

k=1

−P x
k log(P x

k ) (6.9)

where P x
k is the frequency of the kth class for sample x and N is the number of

classi�ers. When the predictions of the classi�ers are distributed evenly across the
possible classes, the entropy is higher and the set of classi�ers more diverse.

Krogh and Vedelsby [81] measure the diversity among the classi�ers through the
ambiguity, which is de�ned as follows:
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ai(xk) = [Vi(xk)− V (xk)]
2 (6.10)

where ai is the ambiguity of the ith classi�er on the example xk, randomly drawn
from an unknown distribution, while Vi and V are the ith classi�er and the ensemble
predictions respectively. In other words, it is simply the variance of ensemble around
the mean, and it measures the disagreement among the networks on input x. Thus
the contribution to diversity of an ensemble member i as measured on a set of M

samples is:

Ai =
1

M

M∑

k=1

ai(xk) (6.11)

and the ambiguity of the ensemble is

A =
1

N

∑
Ai (6.12)

where N is the number of classi�ers. So, if the classi�ers implement the same func-
tions, the ambiguity A will be low, otherwise it will be high. In this scenario the
error from the ensemble is

E = E − A (6.13)

where E is the average errors of the single classi�ers and A is the ambiguity of the
ensemble. Equation 6.13 expresses the trade-o� between bias and variance in the
ensemble, but in a di�erent way than the common bias-variance relation in which the
averages are over possible training sets instead of ensemble averages. If the ensemble
is strongly biased the ambiguity will be small, because the networks implement very
similar functions and thus agree in inputs even outside the training set.
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6.3.2 Proposed Methodology

In this section we describe the hierarchical approach proposed. As stated before, it is
based on a two-level MOGA where the �rst level generates a set of good classi�ers by
conducting feature selection and the second one searches the best ensemble among
such classi�ers. In both cases, MOGAs are based on bit representation, one-point
crossover, and bit-�ip mutation. As depicted in Figure 47, the input of the second
level is a byproduct of the �rst one, which was fully described in the previous section.
Thus, next section focuses the second level of search.

6.3.2.1 2nd Level: Finding the Best Ensemble

Let W = e1, e2, . . . , en be a set of n classi�ers extracted from the Pareto-optimal and
Q a chromosome of size n of the population. The relationship between W and Q is
straightforward, i.e., the gene i of the chromosome Q is represented by the classi�er
ei from W . Thus, if a chromosome has all bits selected, all classi�ers of W will be
included in the ensemble.

In order to �nd the best ensemble of classi�ers, i.e., the most diverse set of classi�ers
that brings a good generalization, we must use two objective functions during this
level of the search, namely, maximization of the recognition rate of the ensemble and
maximization of the ambiguity as proposed in [81]. We have also tried the measures
of diversity described in Section 6.3.1.1, but the choice of ambiguity yielded better
results in our experiments.

At this level of the strategy we want to maximize the generalization of the ensemble,
therefore, it will be necessary to use a way of combining the outputs of all classi�ers
to get a �nal decision. To do this, we have used the average, which is a simple
and e�ective scheme of combining predictions of the neural networks [79]. Other
combination rules such as product, min, and max have been tested but the simple
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Figure 47 The �owchart of the proposed methodology.

average has produced better results. In order to evaluate the objective functions
described above we have used the second validation set (see Appendix 1).

Di�erent from other methodologies for ensemble creation based on feature selection
where only one ensemble is considered, our approach considers w ensembles simul-
taneously, where w is the population size used by MOGA in the second level. This
is due to the fact that each chromosome of the population represents a potential
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ensemble. Moreover, we will see in the experiments that this strategy produces more
compact ensembles than other methods.

6.3.3 Experiments on Isolated Digits

The experiments we are going to describe here take into account the same parameters
we have de�ned for the �rst level, i.e., feature selection. The di�erence is that the
length of the chromosome in the �rst level is the number of components in the feature
set, while here is the number of classi�ers picked from the Pareto-optimal front in
the previous level.
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Figure 48 Di�erent kinds of classi�ers found in the Pareto-optimal front.

As depicted in Figure 48, the feature selection procedure produces quite a large
number of classi�ers, which should be trained for use in the second level. After some
experiments, we found out that the second level always chooses �strong� classi�ers
to compose the ensemble. Thus, in order to speed up the training process and the
second level of search as well, we decide to train and use in the second level just the
�strong� classi�ers. This decision was made after we realized that in our experiments
the �weak� and �medium� classi�ers did not cooperate with the ensemble at all.
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Table XIX summarizes the �strong� classi�ers produced by the �rst level for the
three feature sets we have considered.

Table XIX

Summary of the classi�ers produced by the �rst level.

Feature No. of Range of Range of
Set Classi�ers Features Rec. Rates (%)

Concavities 81 24-125 90.5 - 99.1
Distances 54 30-84 90.6 - 98.1
Edge Maps 78 35-113 90.5 - 97.0

Considering for example the feature set of concavities, the �rst level of the algorithm
provided 81 �strong� classi�ers which have the number of features ranging from 24 to
125 and recognition rates ranging from 90.5% to 99.1% on the test set. This shows
the great diversity of the classi�ers produced by the feature selection method. In
order to assess the objective functions of the second-level MOGA (generalization of
the ensemble and diversity) we have used the second validation set (validation-2 �
Appendix 1).

Like the �rst level, the second one also generates a set of possible solutions which
are the trade-o�s between the generalization of the ensemble and its diversity. Thus
the problem now lies in choosing the most desirable ensemble among all. Figure
49 depicts the variety of ensembles yielded by the second-level MOGA for the three
feature sets. The number over each point stands for the number of classi�ers in
the ensemble. Such information can be used to support the decision about which
ensemble should be selected. Since we are aiming at performance, the direct choice
will be the ensemble that provides better generalization. In our experiments, the
ensemble that presents better performance has also the smallest number of classi�ers.



125

100 150 200 250 300 350 400 450 500 550 600
99.15

99.16

99.17

99.18

99.19

99.2

99.21

99.22

99.23

99.24

Ambiguity

R
ec

. R
at

e 
of

 th
e 

E
ns

em
bl

e 
(%

)

Validation
Pareto−front4 

7 

12 

11 

17 

14 

21 

25 

(a)

100 150 200 250 300 350 400 450 500 550 600
98.08

98.1

98.12

98.14

98.16

98.18

98.2

Ambiguity

R
ec

. R
at

e 
of

 th
e 

E
ns

em
bl

e 
(%

)

Validation
Pareto−front

4 

5 6 

7 

9 

10 

11 13 
15 

16 

(b)

200 400 600 800 1000 1200 1400
97.06

97.07

97.08

97.09

97.1

97.11

97.12

97.13

97.14

97.15

Ambiguity

R
ec

. R
at

e 
of

 th
e 

E
ns

em
bl

e 
(%

)

Validation
Pareto−front7 

10 11 12 13 14 15 16 17 

18 

19 

20 

21 

(c)

Figure 49 The Pareto-optimal front produced by the second-level MOGA: (a) Con-
cavities, (b) Distances, and (c) Edge Maps.

Table XX summarizes the best ensembles produced for the three di�erent feature
sets and their performance at zero-rejection level on the test set. For simplicity, we
reproduce the results achieved by the classi�ers optimized through feature selection,
which were reported in Table XVI. As we can see, the results for zero-rejection level
are very similar.
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Table XX

Performance of the ensembles on the test set.

Feature Number of Rec. Rate (%) Rec. Rate (%)
Set Classi�ers zero-rejection level Feature Selection

Concavities 4 99.22 99.16
Distances 4 98.18 98.21
Edge Maps 7 97.10 97.16

On the other hand, the ensembles respond better for error rates �xed at very low
levels. This can be observed in Figures 50a, b, and, c. The most expressive result
was achieved for the classi�er trained with the Edge Map feature set, which attains a
reasonable performance at zero-rejection level but performs very poorly at low error
rates. In such a case, the ensemble of classi�ers brought an improvement of about
8%. We have noticed that the ensemble reduces the high outputs of some outliers so
that the threshold used for rejection can be reduced and consequently the number of
samples rejected is reduced. Thus, aiming for a small error rate we have to consider
the important role of the ensemble. For the sake of clarity, we do not plot the results
of the classi�ers optimized through feature selection since they produce results very
close to those yielded by the original classi�ers.

In order to complete these experiments we have combined the three ensembles.
Again, several combination methods were tried, and here the average also yielded
better results. However, the combination of the three ensembles was not good enough
to surpass our best ensemble of classi�ers (Figure 50d). After analyzing the errors
produced by the three ensembles, we realized that they do not have enough comple-
mentarity in order to enhance the results. It is important to mention, though, that
such ensembles were not optimized to compose a major ensemble. Figure 51 presents
some examples of misclassi�cation generated by the ensembles, where those signed
with a square would represent mislabelling. We can observe that most of this errors
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Figure 50 Improvements yielded by the ensembles for (a) Concavities, (b) Dis-
tances, (c) Edge Maps, and (d) Combination of the three ensembles.

are pretty di�cult to recognize, with the exception of digits �1�, which are not that
di�cult, but barely appear in the training set of NIST1.

1This style of handwriting is very similar to that found in the Brazilian database (Figure 3b).
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Figure 51 Examples of misclassi�cation (the correct label is the one in parentheses).

6.3.4 Experiments on Strings of Digits

In this last experiment, we have replaced the general-purpose recognizer by the
ensembles of concavities found in the previous section. Figure 52 depicts the system
where the general-purpose recognizer is replaced by the ensemble of classi�ers. Since
all classi�ers of the ensemble use parts of the same feature set, the complete feature
set is extracted and then a module called �Feature Removal� feeds each classi�er
with their respective subset of features.

Since our system takes into account a probabilistic framework where the �nal proba-
bility is provided through the product of the general-purpose recognizer (the ensem-
ble in this case) and two veri�ers, the outputs of the ensemble must be combined in
some way so that it could be interpreted as an estimation of a posteriori probability.
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Figure 52 Ensemble of classi�ers replacing the general-purpose recognizer.

Simple operations such as the product and average do not �t here since they can
only estimate a posteriori probability if the members of the ensemble use mutually
independent feature sets [2].

To surpass this problem, we have designed an MLP to combine the results of the
ensemble. Thus, it has 40 inputs (10× 4 = 40), 30 hidden units, and 10 outputs and
it was trained as described in Section 2.1.2. We have considered the same database
we have used to train the general-purpose recognizer (e10) described in Section 4.1.
This classi�er produced recognition rates at the same levels as those yielded by the
ensemble discussed in the previous section, which uses the average to generate a �nal
result.

Table XXI compares the results of the original system and the system that takes
the ensemble of classi�ers. Since the performance of the ensemble of classi�er for
both zero-rejection level and error rate �xed at 0.5% are very close to the original
classi�er, the results observed on strings of digits are very similar as well. In this
manner, the error-reject curve in this case has the same shape as the one presented
in Figure 33 (Section 5.1.1).



130

Table XXI

Performance of the system on strings of digits using the ensemble of classi�ers.

String Original Classi�ers Ensemble of Classi�er
Length Rec. Error Rec. Error

Rate (%) at 0.5% Rate (%) at 0.5%
2 96.88 93.88 96.70 93.78
3 95.38 89.84 95.00 89.80
4 93.38 84.36 93.40 84.10
5 92.40 82.44 92.40 82.50
6 93.12 84.03 93.12 83.95
10 90.24 75.20 90.02 74.90

6.3.5 Discussion

In this section we have discussed a methodology for ensemble creation based on
feature selection from a two-level MOGA. The experiments on three di�erent feature
sets have demonstrated the validity and e�ciency of the proposed strategy by �nding
small ensembles, which succeed in improving the recognition rates for classi�ers
working with a very low error rates. On the other hand, the experiments also show
that much more research must be done in order to get reliable classi�ers, especially
when dealing with strings of digits. Since the ensembles usually fail when it faces
e�ects produced by fragmentation and the segmentation algorithm, an interesting
direction to investigate could be either to reduce such e�ects or to learn more about
them.

In order to better evaluate our methodology we have implemented the method pro-
posed by Optiz in [130]. We have chosen Optiz's method because it seems to be more
robust than the others we have found in the literature. Basically, our methodology
brought slightly better results but with considerably smaller ensembles. Regarding
Optiz's methodology, the best results were achieved with ensembles composed of 20
classi�ers for all three feature sets, i.e., a population of 20 individuals, while in ours
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the ensembles were composed of 4, 4, and 7 classi�ers as described in Table XX. It
is worth of remark that Optiz achieves his best results using a very high mutation
rate (50%). In our experiments, though, this con�guration did not work at all. After
trying some di�erent rates, we realized that the same values we have used in our
methodology yield better results for Optiz's strategy.

Finally, it is important to emphasize that the feature selection method we have
applied is designed to tackle huge databases so that the pattern recognition problem
can be better represented. On the other hand, our method is more time consuming,
since a two-level optimization is involved.

6.3.6 Summary

In this chapter we have debated di�erent strategies we have examined in order to
improve the performance of the handwriting recognition system. First of all, the
high-level veri�cation was discussed, then feature selection and �nally the ensemble
of classi�ers. In all attempts we have made, results on both isolated and string of
digits were presented. We have seen that very often the results of isolated digits
can be improved while the results of strings of digits stay at the same levels. This
corroborates the statements made in the beginning of this work about the di�culties
of recognizing numerical strings. The next chapter concludes this thesis.



CONCLUSION

The main focus of this thesis was the recognition of unconstrained handwritten
numerical strings, where our e�orts were concentrated towards the problems of under-
and over-segmentation and how to improve the performance of such a system. We
have seen that this is not a trivial problem since besides the inherent variability
of the numerals, strings of digits feature problems such as touching digits, broken
digits, overlapping, and unknown length of the string.

We have proposed a modular o�-line system that can cope with di�erent applica-
tions. It takes a segmentation-based recognition approach where an explicit segmen-
tation is employed. Combination of di�erent levels such as segmentation, recognition
and post-processing is made within a multi-hypothesis approach and a probabilis-
tic model, which allows a sound integration of all knowledge sources used to infer
a plausible interpretation. We have shown a very e�cient scheme of veri�cation to
deal with over-segmentation and under-segmentation problems. Such a scheme takes
into account two low-level veri�ers. The �rst veri�er uses a new feature set, which
is based on multi-level concavity analysis and contextual information, in order to
reduce the confusion between isolated and over-segmented characters. The second
one works on the opposite problem, i.e., eliminating the confusion between isolated
and under-segmented characters.

In order to improve the overall performance of the system that deals with numerical
amounts on Brazilian bank cheques, we have developed a simple and e�cient post-
processor which is based on a deterministic automaton. This module provided an
improvement of about 6% in the recognition rate. Finally, the rejection mechanism
minimizes the number of rejection errors for a given number of rejects. Compre-
hensive experiments on numerical amounts and NIST SD19 databases have been
conducted. High recognition rates at zero-rejection level and a very encouraging
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error-reject trade-o� have been obtained. The results reached by our system com-
pare favorably to other published methods.

Thereafter we have tried some di�erent strategies to improve the performance of the
system by focusing on the general-purpose recognizer. The main contributions at this
level were two-fold. Firstly, we have introduced a methodology for feature selection
which uses a Pareto-based approach to generate the Pareto-optimal front where
sensitivity analysis and neural network enable the use of a representative database
to evaluate �tness. Secondly, we have proposed a methodology for ensemble creation
based on feature selection from a two-level MOGA. The goal of the �rst level is to
carry out the feature selection to yield a set of good classi�ers.

Future Works

During the development of this thesis, we did not have the opportunity to address
some issues due to time constraints. Here we outline some future directions we
believe being worthy of investigation:

• Reduce the number of segmentation cuts so that the number of hypotheses
of segmentation may be reduced. We think that this can be achieved by in-
troducing some kind of intelligence into the segmentation algorithm, since our
algorithm takes into account some heuristics that can be replaced by some
learning mechanism.

• We believe that the high-level veri�cation can be improved in some aspects:

� Use just the samples rejected by the general-purpose recognizer to train
the veri�ers. In this way, they would be more specialized on the di�cult
cases.

� Investigate di�erent classi�ers and feature sets. An interesting classi�er
to be investigated in this case could be SVM, since it is primarily a two-
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class classi�er. However, in such a case, one must elaborate some way to
combine the scores of the SVMs with the scores provided by the MLP, so
that we can use the same rejection rule we have used so far.

� Use some method of perturbation or transformation in order to generate
di�cult cases to train the high-level veri�ers.

� Make the veri�ers produce high measurement levels for those samples
correctly classi�ed and low for those misclassi�ed.

• Design a reliable mechanism to estimate the number of digits in the strings, so
that this information could be used as another source of knowledge to improve
the performance of the system.

• Optimize di�erent feature sets at the same time by using the second level of
search of the proposed methodology. In this way, we can get access to the
complementarity of di�erent feature sets.

• As suggested somewhere, try to reduce e�ects generated by the segmentation
algorithm so that segmented digits would be more similar to isolated ones. An-
other direction would be to learn all those e�ects by generating some arti�cial
data.
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1.1 Numerical Amount Database

This database was collected at the campus of the Ponti�cal Catholic University of
Paraná (PUCPR) in Curitiba, Brazil. It is composed of 2,000 images of numerical
amounts of Brazilian bank cheques where the writers were basically students on cam-
pus. Figure 53 shows some examples of such a database. The number of characters
per image in this database (average length) is about 9.

Figure 53 Examples of the numerical amount database.

The 2,000 images were divided into training, validation, and test sets as described
in Table XXII.

Table XXII

Subset of the numerical amount database.

Sub-Database Number of Images
Training Set 1,300
Validation Set 200

Test Set 500
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Table XXIII

Isolated characters extracted from the numerical amounts.

Class String Databases
Training Validation Test

0 1,190 210 309
1 908 160 289
2 1,043 184 336
3 942 166 316
4 897 158 316
5 925 163 317
6 905 159 302
7 929 163 310
8 808 142 313
9 858 151 303

Total (10 classes of digits) 9,405 1,656 3,111
# 437 77 242
. 924 163 434
, 624 109 242

Total (3 classes of symbols) 1,985 349 918
General total 11,390 2,005 4,029

From the foregoing subsets, 17,424 isolated characters divided into 13 classes were
automatically extracted and manually revised. They were also divided into three
subsets as shown in Table XXIII. We also extracted from this database 900 images
of touching pairs.

Very often numerical amounts on cheques feature some particular behavior, e.g.,
certain amounts and certain con�guration of touching digits such as �00� are more
likely than others. However, it does not hold for this data, since it was designed so
that the probability of occurrence of all amounts is the same. Therefore, the fact
that very small amounts and very large amounts are less likely on cheques does not
happen in this database.
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1.2 NIST SD19

The SD19 is composed of 3669 full-page binary images of Handwritten Sample Forms
(HSF), which are organized in eight series, denoted by hsf_{0,1,2,3,4,6,7,8}. A
total of 814,255 handwritten labelled characters (digit and alphabetic) have been
segmented from these forms and organized by class, �eld and writer (upper and
lower cases are merged). These isolated characters, as well as the full-page images,
can be found on the original SD19 compact disc.

Table XXIV

HSF series distribution.

Sub-Database Number of Images
hsf_0 500
hsf_1 500
hsf_2 500
hsf_3 600
hsf_4 500
hsf_6 499
hsf_7 500
hsf_8 70
Total 3669

An example of a full-page NIST form or HSF page is shown in Figure 54. We can see
that an HSF page consists of 34 �elds, 28 of which contain only numeric characters.
The �eld descriptions are presented in Table XXV.

A total of 100 HSF templates were used to �ll up the HSF pages. The number,
size and location of the �elds are the same in all template variations. However,
they present di�erent strings of characters. These templates are provided by NIST
SD19 in the form of truth �les �refxx.txt�, where �xx� represents a NIST template
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Figure 54 Handwriting Sample Form (HSF full-page form)
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Table XXV

Handwriting sample form (HSF) �elds.

Field Description
�d_0 Name
�d_1 Date
�d_2 City/State/ZIP

�d_3, . . . �d_30 Numerical �elds
�d_31 Lower case character box
�d_32 Upper case character box
�d_33 Free format text

from 00 to 99. Similarly, the page image �les (or forms) have name of the form
�fyyyy_xx.tif�, where yyyy identi�es the writer and �xx� the template number.

1.2.1 Isolated Digits

Table XXVI summarizes the distribution of the isolated digits we have used. They
were extracted from hsf_0, hsf_1 hsf_2 hsf_3, and hsf_7. We have divided these
data into training (195,000), validation (28.124), and test (60,089). For the experi-
ments on feature selection, the test set is divided into validation-2 (30,000) and test
(30,000). The training and validation sets use hsf_{0,1,2,3} while validation-2 and
test sets use hsf_7.

1.2.2 Numerical Strings

Di�erently of the database of isolated digits, this one is provided in a raw format,
i.e., the strings must be extracted from the pages (Figure 54). As part of his doctoral
research, Britto Jr. [13] developed a system to perform this task. The test set he had
proposed contains 12,802 distributed into six classes: 2-digit (2370), 3-digit (2385),
4-digit (2345), 5-digit (2316), 6-digit (2169), and 10-digit (1217) string, respectively.
These data were extracted from hsf_7 series. Another contribution of Britto Jr's
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Table XXVI

Number of samples by digit class - NIST SD19

Class hsf_0123 hsf_7
0 22,971 5,893
1 24,772 6,567
2 22,131 5,967
3 23,172 6,036
4 21,549 5,873
5 19,545 5,684
6 22,128 5,900
7 23,208 6,254
8 22,029 5,889
9 21,619 6,026

Total 223,124 60,089

work lies in building a database for touching digits (pairs only). Such a database
consists of 8,647 images.
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2.1 Edge Maps

The idea behind this feature set is that handwritten numerals are essentially line
drawings on a two-dimensional space. Thus, the input character is represented by
its line segments, which may be horizontal, vertical, or diagonal. To facilitate the
extraction of these segments (also called edges), the input image is �rst thinned.
Then, a simple line detector is used to obtain the respective four-directional edge
maps. The corresponding line detector masks used in our work are shown in Figure
55.

-1 -1 -1

-1 -1 -1

2 2 2

-1 2 -1

-1 2 -1

-1 2 -1

-1 -1 2

2 -1 -1

-1 2 -1

2 -1 -1

-1 -1 2

-1 2 -1

(a) (b) (c) (d)

Figure 55 Line detector masks used for extracting four-directional edge maps: (a)
horizontal lines, (b) vertical lines, (c) 45-degree diagonal lines, and (d)
-45-degree diagonal lines.

After extracting the respective line segments, the edge maps are compressed into
an image of 5 × 5 pixels. This compression not only reduces the size of the feature
vector used, thereby saving on computational overhead, but also retains the more
dominant edge points in the edge map while weeding out isolated spurious edge
points. In addition to these four-directional edge maps, the original image is also
compressed and included as an additional feature in order to capture the global
characteristics of the input image. At the end, we have a feature vector composed of
125 components normalized between 0 and 1. Figure 56 shows the overall edge map
feature extraction procedure.
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Input Image

Thinned and size-
normalized input image

Horizontal

edge map

Vertical

edge map

45-degree diagonal
edge map

-45-degree diagonal
edge map

Compressed four-directional
edge maps

Compressed

image

Figure 56 Overall edge maps feature extraction. The compressed input image and
compressed four-directional edge maps are used as features.

2.2 Directional Distance Distribution

To each of the pixels in the binary input pattern map (Figure 57), two sets of 8 bytes
which we call the W (White) set and B (Black) set are allocated as shown in Figure
58. For a white pixel, the set W is used to encode the distances to the nearest black
pixels in 8 directions. The set B is simply �lled with value zero without computing
the distances. Likewise, for a black pixel, the set B is used to encode the distances
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to the nearest white pixels in 8 directions. The set W is �lled with value zero. (The
8-direction codes are 0(E), 1(NE), 2(N), 3(NW), 4(W), 5(SW), 6(S), 7(SE).)

Figure 57 A sample pattern.

For the sample pattern in Figure 57, the pixel at coordinates (8,2) will have the WB
encoding at the top of Figure 58. Because this pixel is white, the B set is �lled with
value zero. For the set W, to compute the distance value in all 8 directions, the
pixel shoots a ray in each direction, which proceeds until it hits a black pixel. In
case of hitting, the distance travelled is recorded into the byte corresponding to the
ray direction. As an example, for the direction 0, the ray will travel the sequence,
(8, 2)W → (9, 2)W → (10, 2)W → (11, 2)W → (12, 2)B. So the travel distance 4 is
recorded in the �rst byte of the W set.

0 0 0 0 0 0 0 04 1 1 2 1 1 11 6

0 0 0 0 0 0 0 0 5 2 2 2 1 9 1 1

(8,2)

(8,1)

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8 b1 b2 b3 b4 b5 b6 b7 b8

Figure 58 An example of WB encoding.

Figure 58 shows another example of the WB encoding for the black pixel located
at (8,1). In this example, a case occurs when the ray arrives at the map boundary
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without hitting any white pixel. For example, the ray for the direction 3 travels the
sequence, (8, 1)B → (7, 0)B → boundary, and it meets the boundary before hitting a
white pixel. In this case, the ray should stop at the boundary. So the following travel
sequence will be followed; (8, 1)B → (7, 0)B → boundary, and the travel distance is
determined to be 2. This information is recorded in the fourth byte of B set which
corresponds to the direction 3.

After computing WB codings for all the pixels in the map, we convert the map into
a 3× 2 block mesh as shown in Figure 20 and extract 16 averaged WB codings from
each zone. This amounts to a 96-dimensional feature vector normalized between 0
and 1 by summing up their values and then dividing each one by this summation.
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Table XXVII

Confusion matrix (%) of general-purpose recognizer on the training set of 195,000.
The �rst column shows the real identity of the sample while the top row is the

result identity.

0 1 2 3 4 5 6 7 8 9 Total
0 99.82 0.00 0.03 0.02 0.01 0.01 0.04 0.00 0.06 0.03 99.82
1 0.00 99.85 0.03 0.01 0.01 0.02 0.03 0.04 0.01 0.01 99.85
2 0.05 0.01 99.64 0.09 0.05 0.00 0.01 0.08 0.07 0.02 99.64
3 0.02 0.01 0.17 99.61 0.01 0.08 0.01 0.04 0.02 0.04 99.61
4 0.02 0.01 0.03 0.01 99.73 0.00 0.03 0.05 0.02 0.12 99.73
5 0.02 0.01 0.01 0.09 0.02 99.67 0.09 0.00 0.07 0.03 99.67
6 0.05 0.02 0.02 0.01 0.02 0.07 99.79 0.01 0.03 0.00 99.79
7 0.00 0.04 0.08 0.04 0.07 0.01 0.00 99.65 0.00 0.12 99.65
8 0.12 0.07 0.05 0.06 0.08 0.11 0.02 0.03 99.37 0.08 99.37
9 0.07 0.01 0.01 0.04 0.11 0.02 0.02 0.16 0.06 99.50 99.50

99.66

Table XXVIII

Confusion matrix (%) of general-purpose recognizer on the test set of 60,089.

0 1 2 3 4 5 6 7 8 9 Total
0 99.00 0.00 0.14 0.03 0.24 0.05 0.24 0.03 0.17 0.01 99.00
1 0.00 99.16 0.55 0.07 0.02 0.00 0.00 0.20 0.00 0.00 99.16
2 0.02 0.00 99.30 0.18 0.03 0.00 0.02 0.29 0.13 0.03 99.30
3 0.09 0.05 0.25 98.70 0.02 0.29 0.00 0.42 0.13 0.05 98.70
4 0.00 0.02 0.03 0.00 99.41 0.00 0.15 0.09 0.02 0.28 99.41
5 0.02 0.06 0.00 0.16 0.03 99.31 0.00 0.02 0.03 0.37 99.31
6 0.12 0.06 0.02 0.00 0.09 0.16 99.54 0.00 0.01 0.00 99.54
7 0.00 0.03 0.22 0.03 0.17 0.00 0.00 99.36 0.00 0.19 99.36
8 0.61 0.17 0.01 0.18 0.17 0.09 0.01 0.05 99.28 0.25 98.28
9 0.05 0.03 0.00 0.05 0.32 0.05 0.00 0.24 0.07 99.19 99.19

99.13



BIBLIOGRAPHY

[1] I. S. I. Abuhaiba and P. Ahmed. A fuzzy graph theoretic approach to rec-
ognize the totally unconstrained handwritten numerals. Pattern Recognition,
26(9):1335�1350, 1993.

[2] F. M. Alkoot and J. Kittler. Experimental evaluation of expert fusion strate-
gies. Pattern Recognition Letters, 20(11-13):1361�1369, 1999.

[3] A. Waibel amd T. Hanazawa, G. Hilton, K. Shikano, and K. J. Lang. Phoneme
recognition using time-delay neural networks. IEEE Trans. on Acoustics,
Speach, and Signal Processing, 37:328�339, 1989.

[4] N. Arica and F. T. Y. Vural. An overview of character recognition focused on
o�-line handwriting. IEEE Trans. on Systems, Man, and Cybernetics - Part
C:Applications and Reviews, 31(2):216�233, 2001.

[5] N. E. Ayat, M. Cheriet, and C. Y. Suen. Optimization of the svm kernels using
an empirical error minimization scheme. In Proc. of the International Workshop
on Pattern Recognition with Support Vector Machine, pages 354�369, Niagara
Falls, Canada, 2002.

[6] R. R. Bailey and M. Srinath. Orthogonal moment features for use with para-
metric and non-parametric classi�ers. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 18(4):389�399, 1996.

[7] Banco Central do Brasil. Manual de Normas e Instruções - Circular no 001825,
October 1990. http://www.bcb.gov.br/mPag.asp?codP=106&cod=112&per-
�l=1 (in portuguese).

[8] N. Benahmed. Optimisation de réseaux de neurones pour la reconnaissance
de chi�res manuscrits isolés: Sélection et pondération des primitives par algo-
rithmes génétiques. Master's thesis, Ecole de Technologie Superieure, Univer-
sité du Quebec, Montreal - Canada, March 2002.

[9] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford Univ. Press,
Oxford - U.K., 1995.

[10] H. Bourlard and N. Morgan. Merging multilayer perceptrons and hidden
Markov models: Some experiments in continuous speech recognition. In
E.Gelenbe, editor, Neural Networks: Advances and Applications. North Hol-
land Press, 1991.



150

[11] L. Breiman. Bagging predictors. Machine Learning, 24(2):123�140, 1996.

[12] J. S. Bridle. Training stochastic model recognition algorithms as networks can
lead to maximum mutual information estimation of parameters. In Proc. of
Advances in Neural Information Processing Systems, volume 2, pages 211�217.
Morgan Kaufmann, 1990.

[13] A. Britto-Jr. A Two-stage HMM-based method for recognizing handwritten
numeral strings. PhD thesis, Pontifícia Universidade Católica do Parana,
Curitiba-Brazil, 2001.

[14] A. Britto-Jr., R. Sabourin, F. Bortolozzi, and C. Y. Suen. A string lenght pre-
dictor to control the level building of HMMs for handwritten numeral recogni-
tion. In Proc. of 16th International Conference on Pattern Recognition (ICPR),
volume 4, pages 31�34, Quebec City, Canada, 2002. IEEE Computer Society.

[15] C. E. Brodley. Adressing the selective superiority problem: Automatic al-
gorithm/model class selection. In Proc. of 10th International Conference on
Machine Learning, pages 17�24, 1993.

[16] T. M. Bruel. A system for the o�-line recognition of handwritten text. In Proc.
of 12th International Conference on Pattern Recognition (ICPR), volume 2,
pages 129�133, Jerusalem, Israel, 1994.

[17] H. Byun and S. W. Lee. Applications of support vector machines for pattern
recognition. In Proc. of the International Workshop on Pattern Recognition
with Support Vector Machine, pages 213�236, Niagara Falls, Canada, 2002.

[18] J. Cai and Z. Q. Liu. Integration of structural and statistical information
for unconstrained handwritten numeral recognition. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 21(3):263�270, 1999.

[19] E. Cantu-Paz. E�cient and Accurate Parallel Genetic Algorithms. Kluwer
Academic Publishers, 2000.

[20] R. Casey and E. Lecolinet. A survey of methods and strategies in character
segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence,
18(7):690�706, 1996.

[21] M. Y. Chen, A. Kundu, and J. Zhou. O�-line handwritten word recognition
using a hidden Markov model type stochastic network. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 16(5):481�496, 1994.

[22] Y. K. Chen and J. F. Wang. Segmentation of single- or multiple-touching



151

handwritten numeral string using background and foregound analysis. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 22(11):1304�1317, 2000.

[23] D. Cheng and H. Yan. Recognition of handwritten digits based on contour
information. Pattern Recognition, 31(3):235�255, 1998.

[24] K. W. Cheung, D. Y. Yeung, and R. T. Chin. A Bayesian framework
for deformable pattern recognition with application to handwritten charac-
ter recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence,
20(12):1382�1388, 1998.

[25] Y. C. Chim, A. A. Kassim, and Y. Ibrahim. Dual classi�er system for hand-
printed alphanumeric character recognition. Pattern Analysis and Applica-
tions, 1(3):155�162, 1998.

[26] S. J. Cho, J. Kim, and J. H. Kim. Veri�cation of graphemes using neural
networks in an HMM-based on-line Korean handwritting recognition system.
In Proc. of 7th International Workshop on Frontiers of Handwriting Recognition
(IWFHR), pages 219�228, Amsterdam, Netherlands, 2000.

[27] S. E. N. Correia and J. M. Carvalho. Optimizing the recognition rates of un-
constrained handwritten numerals using biorthogonal spline wavelets. In Proc.
of 15th International Conference on Pattern Recognition (ICPR), volume 2,
pages 251�254, Barcelona, Spain, 2000. IEEE Computer Society.

[28] P. Cunningham and J. Carney. Diversity versus quality in classi�cation en-
sembles based on feature selection. In Proc. of the 11th European Conference
on Machine Learning, pages 109�116, 2000.

[29] M. Dash and H. Liu. Feature selection for classi�cation. Intelligent Data
Analysis, 1(3):131�156, 1997.

[30] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley and Sons Ltd, 2001.

[31] K. Deb and D. E. Goldberg. An investigation of niche and species forma-
tion in genetic function. In Proc. of 3rd International Conference on Genetic
Algorithms, pages 42�50, 1989.

[32] G. Dimauro, S. Impedovo, G. Pirlo, and A. Salzo. Automatic bankcheck pro-
cessing: A new engineered system. In S. Impedovo et al, editor, Interna-
tional Journal of Pattern Recognition and Arti�cial Intelligence, pages 467�
503. World Scienti�c, 1997.



152

[33] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classi�cation. John Wiley
and Sons, 2nd edition, 2001.

[34] G. Dzuba, A. Filatov, D. Gershuny, I. Kil, and V. Nikitin. Check amount
recognition based on the cross validation of courtesy and legal amount �elds.
In S. Impedovo et al, editor, International Journal of Pattern Recognition and
Arti�cial Intelligence, pages 639�655. World Scienti�c, 1997.

[35] B. Efron and Tibshirani R. An introduction to the Bootstrap. Chapman and
Hall, 1993.

[36] C. Emmanouilidis, A. Hunter, and J. MacIntyre. A multiobjective evolutionary
setting for feature selection and a commonality-based crossover operator. In
Proc. of Congress on Evolutionary Computation, volume 1, pages 309�316,
2000.

[37] G. D. Forney-Jr. The viterbi algorithm. Procs. of IEEE, 61(3):268�278, 1973.

[38] J. Freeman and D. Skapura. Neural Networks - Algorithms, Applications and
Programming Techniques. Addison-Wesley, 1992.

[39] C. Freitas, M. Morita, L. S. Oliveira, E. Justino, A. Yacoubi, E. Lethelier,
F. Bortolozzi, and R. Sabourin. Base de dados de cheques bancários Brasileiros.
In Proc. of XXVI Conferencia Latinoamericana de Informatica, Atizapan de
Zaragoza, Mexico, 2000. (in portuguese).

[40] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In
Proc. of 13th International Conference on Machine Learning, pages 148�156,
Bary, Italy, 1996.

[41] H. Fujisawa, Y. Nakano, and K. Kurino. Segmentation methods for character
recognition: from segmentation to document structure analysis. Proc. of IEEE,
80:1079�1092, 1992.

[42] G. Fumera, F. Roli, and G. Giacinto. Reject option with multiple thresholds.
Pattern Recognition, 33(12):2099�2101, 2000.

[43] P. D. Gader, B. Forester, M. Ganzberger, A. Billies, B. Mitchell, M. Whalen,
and T.Youcum. Recognition of handwritten digits using template and model
matching. Pattern Recognition, 5(24):421�431, 1991.

[44] P. D. Gader, J. M. Keller, and J. Cai. A fuzzy logic system for detection
and recognition of street number �elds on handwritten postal addresses. IEEE
Trans. on Fuzzy Systems, 3(1):83�95, 1995.



153

[45] P. D. Gader and M. A. Khabou. Automatic feature generation for handwritten
digit recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence,
18(12):1256�1261, 1996.

[46] P. D. Gader, M. A. Mohamed, and J. M. Keller. Fusion of handwritten word
classi�ers. Pattern Recognition Letters, 17(6):577�584, 1996.

[47] C. Gerra-Salcedo and D. Whitley. Genetic approach to feature selection for en-
semble creatin. In Proc. of Genetic and Evolutionary Computation Conference,
pages 236�243, Orlando, USA, 1999.

[48] D. Goldberg. Genetic Algorithms in search, optimization and machine learning.
Reading, Mass., Addison-Wesley, 1989.

[49] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multi-
modal function optimisation. In Proc. of 2nd International Conference on Ge-
netic Algorithms and Their Applications, pages 41�49, 1987.

[50] N. Gorski. Practical combination of multiple classi�ers. In Progress in Hand-
writting Recognition, pages 277�284. World Scienti�c, 1996.

[51] N. Gorski, V. Anisimov, E. Augustin, O. Baret, and S. Maximov. Industrial
bank check processing: the A2iA CheckReaderTM . International Journal on
Document Analysis and Recognition, 3:196�206, 2001.

[52] P. J. Grother. NIST Special Database 19 - Handprinted forms and characters
database. National Institute of Standards and Technology (NIST), 1995.

[53] D. Guillevic and C. Y. Suen. Cursive script recognition applied to the process-
ing of bank cheques. In Proc. of 3th International Conference on Document
Analysis and Recognition (ICDAR), pages 11�14, Montreal, Canada, 1995.

[54] T. M. Ha and H. Bunke. O�-line, handwritten numeral recognition by pertur-
bation method. IEEE Trans. on Pattern Analysis and Machine Intelligence,
19(5):535�539, 1997.

[55] T. M. Ha, M. Zimmermann, and H. Bunke. O�-line handwritten numeral string
recognition by combining segmentation-based and segmentation-free methods.
Pattern Recognition, 31(3):257�272, 1998.

[56] M. Hanmandlu, K. R. Mohan, S. Chakraborty, S. Goyal, and D. R. Choudhury.
Unconstrained handwritten character recognition based on fuzzy logic. Pattern
Recognition, 36(3):603�623, 2003.



154

[57] L. Hansen and O. Salomon. Neural network ensembles. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 12(10):993�1001, 1990.

[58] S. Hashem. Optimal linear combinations of neural networks. Neural Networks,
10(4):599�614, 1997.

[59] T. Hastie and P. Y. Simard. Metrics and models for handwritten character
recognition. Statistical Science, 13(1):54�65, 1998.

[60] L. Heutte, T. Paquet, J. V. Moreau, Y. Lecourtier, and C. Olivier. A struc-
tural/statistical feature based vector for handwritten character recognition.
Pattern Recognition Letters, 19(7):629�641, 1998.

[61] L. Heutte, P. Pereira, O. Bougeois, J. Moreau, B. Plessis, and P. Courtelle-
mont. Multi-bank check recognition system: Consideration on the numeral
amount recognition module. In S.Impedovo et al, editor, International Jour-
nal of Pattern Recognition and Arti�cial Intelligence, pages 595�617. World
Scienti�c, 1997.

[62] T. Hirano, Y. Okada, and F. Yoda. Structural character recognition using
simulated annealing. In Proc. of 4th International Conference on Document
Analysis and Recognition (ICDAR), pages 507�510, Ulm, Germany, 1997.

[63] S. Y. Ho and H. L. Huang. Facial modeling from an uncalibrated face image
using a coarse-to-�ne genetic algorithm. Pattern Recognition, 34(5):1015�1031,
2001.

[64] T. K. Ho. The random subspace method for constructing decision forests. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 20(8):832�844, 1998.

[65] J. H. Holland. Adaptation in natural arti�cial systems. University of Michigan
Press, Ann Arbor, 1975.

[66] G. F. Houle, D. B. Aragon, R. W. Smith, M. Shridhar, and F. Kimura. A
multi-layered corroboration-based check reader. In Proc. of IAPR Workshop
on Document Analysis Systems, pages 495�546, Malvern, USA, 1996.

[67] J. Hu and Y. Yan. Structural primitive extraction and coding for handwritten
numeral recognition. Pattern Recogniton, 31:493�509, 1998.

[68] M. K. Hu. Visual pattern recognition by moment invariant. IEEE Trans. on
Information Theory, 8:179�187, 1962.

[69] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptative



155

mixtures of local experts. Neural Computation, 3(1):79�87, 1991.

[70] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: A
review. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(1):4�
37, 2000.

[71] A. K. Jain and D. Zongker. Representation and recognition of handwritten dig-
its using deformable templates. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 19(12):1386�1391, 1997.

[72] B. K. Jang and R. T. Chin. One-pass parallel thinning: Analysis, properties,
and quantitative evaluation. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 14(11):1129�1140, 1992.

[73] G. John, R. Kohavi, and K. P�eger. Irrelevant features and the subset selection
problems. In Proc. of 11th International Conference on Machine Learning,
pages 121�129, 1994.

[74] G. Kaufmann and H. Bunke. Automated reading of cheque amounts. Pattern
Analysis and Applications, 3(2):132�141, 2000.

[75] J. Keeler and D. E. Rumelhart. A self-organizing integrated segmentation and
recogniton neural networks. In J. E. Moody, S. J. Hanson, and R. L. Lippmann,
editors, Advances in Neural Information Processing Systems, volume 4, pages
496�503. Morgan Kaufmann, 1992.

[76] G. Kim and S. Kim. Feature selection using genetic algorithms for handwritten
character recognition. In Proc. of 7th International Workshop on Frontiers of
Handwriting Recognition (IWFHR), pages 103�112, Amsterdam, Netherlands,
2000.

[77] F. Kimura and M. Shridhar. Segmentation-recognition algorithm for zip code
�eld recognition. Machine Vision and Applications, 5:199�210, 1992.

[78] L. Kira and L. Rendell. A practical approach to feature selection. In Proc.
of 9th International Conference on Machine Learning, pages 249�256. Morgan
Kaufmann, 1992.

[79] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classi�ers. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 20(3):226�239, 1998.

[80] S. Knerr, V. Anisimov, O. Baret, N. Gorski, D. Price, and J. Simon. The
A2iA intercheque system: Courtesy amount and legal amount recognition for
french checks. In S.Impedovo et al, editor, International Journal of Pattern



156

Recognition and Arti�cial Intelligence, pages 505�547. World Scienti�c, 1997.

[81] A. Krogh and J. Vedelsby. Neural networks ensembles, cross validation, and
active learning. In G.Tesauro et al, editor, Advances in Neural Information
Processing Systems, volume 7, pages 231�238. MIT Press, 1995.

[82] L. Kuncheva, J. C. Bezdek, and R. P. W. Duin. Decision templates for multiple
classi�er fusion: An experimental comparison. Pattern Recognition, 34(2):299�
314, 2001.

[83] L. Kuncheva and L. C. Jain. Designing classi�er fusion systems by genetic
algorithms. IEEE Trans. on Evolutionary Computation, 4(4):327�336, 2000.

[84] L. I. Kuncheva. A theoretical study on six classi�er fusion strategies. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 24(2):281�286, 2002.

[85] L. I. Kuncheva and C. J. Whitaker. Ten measures of diversity in classi�er
ensembles:limits for two classi�ers. In Proc. of IEE Workshop on Intelligent
Sensor Processing, pages 1�10, 2001.

[86] L. Lam and C. Y. Suen. Optimal combinations of pattern classi�ers. Pattern
Recognition Letters, 16(9):945�954, 1995.

[87] B. Lazzerini and F. Marcelloni. A linguistic fuzzy recognizer of o�-line hand-
wrriten characters. Pattern Recognition Letters, 21(4):319�327, 2000.

[88] E. Lecolinet and J. P. Crettez. A grapheme-based segmentation technique for
cursive script recognition. In Proc. of 1st International Conference on Doc-
ument Analysis and Recognition (ICDAR), pages 740�749, St.Malo, France,
1991.

[89] Y. LeCun, B. Boser, J. S. Denker, B. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541�551, 1989.

[90] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. Gradient-based learning
applied to document recognition. Procs of IEEE, 86(11):2278�2324, 1998.

[91] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Muller. E�cient backprop. In
G. Orr and K. Miller, editors, Neural Networks: tricks of the trade. Springer,
1998.

[92] D. S. Lee and S. N. Srihari. A theory of classi�er combination:the neural net-
work approach. In Proc. of 3th International Conference on Document Analysis



157

and Recognition (ICDAR), volume 1, pages 42�45, Montreal, Canada, 1995.

[93] S. W. Lee. Multilayer cluster neural network for totally unconstrained hand-
written numeral recognition. Neural Networks, 8:783�792, 1995.

[94] S. W. Lee. O�-line recognition of totally unconstrained handwritten numerals
using multilayer cluster neural networks. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 18(6):648�652, 1996.

[95] S. W. Lee and S. Y. Kim. Integrated segmentation and recognition of handwrit-
ten numerals with cascade neural networks. IEEE Trans. on Systems, Man,
and Cybernetics, Part C:Applications and Reviews, 29(2):285�290, 1999.

[96] E. Lethelier, M. Leroux, and M. Gilloux. An automatic reading system for
handwritten numeral amounts on french checks. In Proc. of 3rd International
Conference on Document Analysis and Recognition (ICDAR), pages 92�97,
Montreal, Canada, 1995. IEEE Computer Society.

[97] H. C. Leung. Speech recognition using stochastic explicit-segment moduling. In
Proc. of 2nd European Conference on Speech Communication and Technology,
pages 931�934, 1991.

[98] L. Ling, M. Lizaraga, N. Gomes, and A. Koerich. A prototype for brazilian
bankcheck recognition. In S.Impedovo et al, editor, International Journal of
Pattern Recognition and Arti�cial Intelligence, pages 549�569. World Scienti�c,
1997.

[99] R. P. Lippmann. Pattern classi�cation using neural networks. IEEE Commu-
nications Magazine, 27(11):47�64, 1989.

[100] C. Liu and M. Nakagawa. Handwritten numeral recognition using neural net-
works:improving the accuracy by discriminative training. In Proc. of 5th Inter-
national Conference on Document Analysis and Recognition (ICDAR), pages
257�260, Bangalore, India, 1999.

[101] H. Liu and R. Setiono. A probabilistic approach to feature selection - a �lter
approach. In Proc. of 13th International Conference on Machine Learning,
pages 319�327. Morgan Kaufmann, 1996.

[102] W. Liu, M. Wang, and Y. Zhong. Selecting features with genetic algorithms
in handwritten digits recognition. In Proc. of International Conference on
Evolutionary Computation, pages 396�399, 1995.

[103] Z. Lu, Z. Chi, and W. C. Siu. Extraction and optimization of B-spline PBD



158

templates for recognition of connected handwritten digit strings. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 24(1):132�2002, 1996.

[104] G. Martin, M. Rashid, and J. Pittman. Integrated segmentation and recog-
nition through exhaustive scans or learned saccadic jumps. In I. Guyon and
P. S. P. Wang, editors, Advances in pattern recognition systems using network
technologies, pages 187�203. World Scienti�c, 1993.

[105] O. Matan and J. C. Burges. Recognizing overlapping hand-printed charac-
ters by centered-objects integrated segmentation and recognition. In Proc. of
International Joint Conference on Neural Networks (IJCNN), pages 504�511,
Seattle, USA, 1991.

[106] O. Matan, J. C. Burges, Y. LeCun, and J. S. Denker. Multi-digit recognition
using a space displacement neural network. In J. E. Moody, S. J. Hanson, and
R. L. Lippmann, editors, Advances in Neural Information Processing Systems,
volume 4, pages 488�495. Morgan Kaufmann, 1992.

[107] G. Mayraz and G. E. Hinton. Recognizing handwritten digits using hierar-
chical products of experts. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 24(2):189�197, 2002.

[108] L. Micó and J. Oncina. Comparison of fast nearest neighbour classi�er for
handwritten character recogniton. Pattern Recognition Letters, 19(3-4):351�
356, 1999.

[109] M. Miki, T. Hiroyasu, K. Kaneko, and K. Hatanaka. A parallel genetic algo-
rithm with distributed environment scheme. In Proc. of International Confer-
ence on System, Man, and Cybernetics, volume 1, pages 695�700, 1999.

[110] K. Mitra, K. Deb, and S. K. Gupta. Multiobjective dynamic optimization of
an industrial nylon 6 semibatch reactor using genetic algorithm. Journal of
Applied Polymer Science, 69(1):69�87, 1998.

[111] J. Moody and J. Utans. Principled architecture selection for neural networks:
Application to corporate bond rating prediction. In J. Moody, S. J. Hanson,
and R. P. Lippmann, editors, Advances in Neural Information Processing Sys-
tems, volume 4. Morgan Kaufmann, 1991.

[112] S. Mori, C. Y. Suen, and K. Yamamoto. Historical review of OCR research
and development. Procs. of IEEE, 80:1029�1057, 1992.

[113] M. Morita, L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. An



159

HMM-MLP hybrid system to recognize handwritten dates. In Proc. of Inter-
national Joint Conference on Neural Networks (IJCNN), pages 1�6, Honolulu,
USA, 2002. IEEE Computer Society.

[114] G. Nagy. State of the art in pattern recognition. Procs of IEEE, 56:336�362,
1992.

[115] P. Narendra and K. Fukunaga. A branch and bound algorithm for feature
subset selection. IEEE Trans. on Computers, 26:917�922, 1977.

[116] H. Nishida. Curve description based on directional features and quasi-
convexity/concavity. Pattern Recognition, 28(7):1045�1051, 1995.

[117] I-S. Oh, J-S. Lee, and C. Y. Suen. Analysis of class separation and combina-
tion of class-dependent features for handwriting recognition. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 21(10):1089�1094, 1999.

[118] I-S. Oh and C. Y. Suen. Distance features for neural network-based recognition
of handwritten characters. International Journal on Document Analysis and
Recognition, 1(2):73�88, 1998.

[119] L. S. Oliveira, N. Benahmed, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Fea-
ture subset selection using genetic algorithms for handwritten digit recognition.
In Proc. of 14th Brazilian Symposium on Computer Graphics and Image Pro-
cessing, pages 362�369, Florianopolis, Brazil, 2001. IEEE Computer Society.

[120] L. S. Oliveira, E. Lethelier, F. Bortolozzi, and R. Sabourin. Handwritten
digits segmentation based on structural approach. In Proceedings of the 13th

Brazilian Symposium on Computer Graphics and Imaging Processing, pages
67�73, Gramado, Brazil, 2000. IEEE Computer Society.

[121] L. S. Oliveira, E. Lethelier, F. Bortolozzi, and R. Sabourin. A new approach
to segment handwritten digits. In Proc. of 7th International Workshop on
Frontiers of Handwriting Recognition (IWFHR), pages 577�582, Amsterdam,
Netherlands, 2000.

[122] L. S. Oliveira, E. Lethelier, F. Bortolozzi, and R. Sabourin. A new segmenta-
tion approach for handwritten digits. In Proc. of 15th International Conference
on Pattern Recognition (ICPR), volume 2, pages 323�326, Barcelona, Spain,
2000. IEEE Computer Society.

[123] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. High-level veri�ca-
tion of handwritten numeral strings. In Proc. of 14th Brazilian Symposium on



160

Computer Graphics and Image Processing, pages 36�43, Florianopolis, Brazil,
2001. IEEE Computer Society.

[124] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. A modular system
to recognize numerical amounts on Brazilian bank cheques. In Proc. of 6th

International Conference on Document Analysis and Recognition (ICDAR),
pages 389�394, Seattle, USA, 2001. IEEE Computer Society.

[125] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Automatic recogni-
tion of handwritten numerical strings: A recognition and veri�cation strategy.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(11):1438�1454,
2002.

[126] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Feature selection
using multi-objective genetic algorithms for handwritten digit recognition. In
Proc. of 16th International Conference on Pattern Recognition, volume 1, pages
568�571, Quebec City, Canada, 2002. IEEE Computer Society.

[127] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Feature selection
for ensembles : A hierarchical multi-objective genetic algorithm approach. In
Proc. of 7th International Conference on Document Analysis and Recognition,
Edinburgh-Scotland, 2003. IEEE Computer Society.

[128] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Impacts of veri-
�cation on a numeral string recognition system. Pattern Recognition Letters,
24(7):1023�1031, 2003.

[129] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. A methodology for
feature selection using multi-objective genetic algorithms for handwritten digit
string recognition. International Journal of Pattern Recognition and Arti�cial
Intelligence, 17(6), 2003.

[130] D. W. Optiz. Feature selection for ensembles. In Proc. of 16th International
Conference on Arti�cial Intelligence, pages 379�384, 1999.

[131] N. C. Oza and K. Tumer. Input decimation ensembles: Decorrelation through
dimensionality reduction. In Proc. of the 2nd International Workshop on Mul-
tiple Classi�er Systems, pages 238�247, Cambridge, UK, 2001.

[132] J. Park, V. Govindaraju, and S. N. Srihari. OCR in a hierarchical feature
space. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(4):400�
407, 1998.



161

[133] S. Pittner and S. V. Kamarthi. Feature extraction from wavelet coe�cients
for pattern recognition tasks. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 21(1):83�88, 1999.

[134] R. Plamondon and S. N. Srihari. On-line and o�-line handwriting recogni-
tion: A comprehensive survey. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 22(1):63�84, 2000.

[135] S. Procter, J. Illingworth, and A. J. Elms. The recognition of handwritten
digit strings of unknown length using hidden Markov models. In Proc. of 14th

International Conference Pattern Recognition (ICPR), pages 1515�1517, 1998.

[136] V. E. Ramesh and N. Murty. O�-line signature veri�cation using genetically
optimized weighted features. Pattern Recognition, 32(2):217�233, 1999.

[137] S. Rao. Optimization theory and application. New Delhi:Wiley Eastern Lim-
ited, 1991.

[138] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and L. C. Jain. Di-
mensionality reduction using genetic algorithms. IEEE Trans. on Evolutionary
Computation, 4(2):164�171, 2000.

[139] M. D. Richard and R. P. Lippmann. Neural network classi�ers estimate
bayesian a posteriori probabilities. Neural Computation, 3(4):461�483, 1991.

[140] M. Richeldi and P. Lanzi. Performing e�ective feature selection by investigating
the deep structure of the data. In Proc. of 2nd International Conference on
Knowledge Discovery and Data Mining, pages 379�383, 1996.

[141] J. Schurmann. Pattern Classi�cation - A uni�ed view of statistical and neural
approaches. Wiley interscience, 1996.

[142] D. Shi. Feature selection for handwritten Chinese character recognition based
on genetic algorithm. In International Conference on System, Man, and Cy-
bernetics, volume 5, pages 4201�4206, 1998.

[143] Z. Shi, N. Srihari, C. Y. Shin, and A. V. Ramanaprasad. A system for segmen-
tation and recognition of totally unconstrained handwritten numeral strings. In
Proc. of 4th International Conference on Document Analysis and Recognition
(ICDAR), volume 2, pages 455�458, 1997.

[144] M. Shridhar and A. Badreldin. High accuracy character recognition algorithm
using fourier and topological descriptors. Pattern Recognition, 17(5):515�524,
1984.



162

[145] M. Shridhar and A. Badreldin. Recognition of isolated and simply connected
handwritten numerals. Pattern Recognition, 19(1):1�12, 1986.

[146] W. Siedlecki and J. Sklansky. A note on genetic algorithms for large scale on
feature selection. Pattern Recognition Letters, 10:335�347, 1989.

[147] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sort-
ing in genetic algorithms. Evolutionary Computation, 2(3):221�248, 1995.

[148] N. W. Strathy. A method for segmentation of touching handwritten numerals.
Master's thesis, Concordia University, Montreal - Canada, Setember 1993.

[149] C. Y. Suen, M. Berthod, and S. Mori. Automatic recognition of handprinted
characters: The state of the art. Procs. of IEEE, 68:469�487, 1980.

[150] C. Y. Suen, K. Liu, and N. W. Strathy. Sorting and recognizing cheques and
�nancial documents. In Proc. of 3rd IAPR Workshop on Document Analysis
Systems, pages 1�18, Nagano, Japan, 1998.

[151] C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, and L. Lam. Computer recog-
nition of unconstrained handwritten numerals. Procs of IEEE, 80:1162�1180,
1992.

[152] H. Takahashi and T. Gri�n. Recogniton enhancement by linear tournament
veri�cation. In Proc. of 2nd International Conference on Document Analy-
sis and Recognition (ICDAR), pages 585�588, Tsukuba, Japan, 1993. IEEE
Computer Society.

[153] C. C. Tappert, C. Y. Suen, and T. Wakahara. The state of the art in on-
line handwritting recognition. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 12(8):787�808, 1990.

[154] D. Tax, M. Breukelen, R. Duin, and J. Kittler. Combining multiple classi�ers
by averaging or by multiplying? Pattern Recognition, 33(9):1475�1485, 2000.

[155] L. N. Teow and J.F. Loe. Robust vision-based features and classi�ca-
tion schemes for o�-line handwritten digit recognition. Pattern Recognition,
35(11):2355�2364, 2002.

[156] O. D. Trier, A. K. Jain, and T. Taxt. Feature extraction methods for character
recognition: A survey. Pattern Recognition, 29(4):641�662, 1996.

[157] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.



163

[158] D. S. Weile, E. Michielssen, and D. E. Goldberg. Genetic algorithm design of
Pareto optimal broadband microwave absorbers. IEEE Trans. on Electromag-
netic Compatibility, 38(3):518�525, 1996.

[159] L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combining multiple classi�ers
and their applications to handwriting recognition. IEEE Trans. on Systems,
Man, and Cybernetics, 22(3):418�435, 1992.

[160] J. Yang and V. Honavar. Feature subset selection using a genetic algorithm.
IEEE Intelligent Systems, 13(1):44�49, 1998.

[161] H. Yuan, S. S. Tseng, W. Gangshan, and Z. Fuyan. A two-phase feature
selection method using both �lter and wrapper. In Proc. of IEEE International
Conference on Systems, Man, and Cybernetics, volume 2, pages 132�136, 1999.

[162] B. Zhang, M. Fu, and H. Yan. A nonlinear neural network model of mix-
ture of local principal component analysis: application to handwritten digits
recogntion. Pattern Recognition, 34(2):203�214, 2001.

[163] B. Zhang, M. Fu, H. Yan, and M. A. Fabri. Handwritten digit recognition by
adaptative-subspace self organizing map (ASSOM). IEEE Trans. on Neural
Networks, 10:939�945, 1999.

[164] G. P. Zhang. Neural networks for classi�cation: A survey. IEEE Trans. on
Systems, Man, and Cybernetics - Part C:Applications and Reviews, 30(4):451�
462, 2000.

[165] J. Zhou. Recognition and Veri�cation of Unconstrained Handwritten Numeral.
PhD thesis, Concordia University, Montreal-Canada, November 1999.

[166] J. Zhou, Q. Gan, A. Krzyzak, and C. Y. Suen. Recognition of handwritten nu-
merals by quantun neural networks with fuzzy features. International Journal
on Document Analysis and Recognition, 2(1):30�36, 1999.

[167] J. Zhou, Q. Gan, A. Krzyzak, and C. Y. Suen. Recognition and veri�cation
of touching handwritten numerals. In Proc. of 7th International Workshop on
Frontiers of Handwriting Recognition (IWFHR), pages 179�188, Amsterdam,
Netherlands, 2000.

[168] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2):173�195, 2000.

[169] J. J. Zou and H. Yan. Extracting strokes from static line images based on
selective searching. Pattern Recognition, 32(6):935�946, 1999.


