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Abstract

This thesis presents a segmentation-free method for recognizing handwritten

numeral strings, which is composed of two HMM-based stages. The first stage consists

of an implicit segmentation process that takes into account some contextual information

to provide multiple segmentation-recognition hypotheses for a given preprocessed

string. These hypotheses are verified and re-ranked in a second stage by using an

isolated digit classifier. This method enables the use of two sets of features and numeral

models: one taking into account both the segmentation and recognition aspects in an

implicit segmentation based strategy, and the other considering just the recognition

aspects of isolated digits. These two stages have been shown to be complementary, in

the sense that the verification stage compensates for the loss in terms of recognition

performance brought about by the necessary tradeoff between segmentation and

recognition carried out in the first stage. A full evaluation of the proposed method has

been carried out on isolated digits - handwritten numeral strings of different lengths -

and touching digit pairs extracted, all extracted from the NIST database.

A zero-level rejection was used in the experiments. On 10,000 isolated digits,

the method achieved an average recognition rate of 98.02%. The experiments on 12,802

handwritten numeral strings of different lengths showed that the use of a two-stage

recognition strategy is a promising idea. The verification stage brought about an average

improvement of 9.92% on the string recognition rates. The method achieved global

recognition rates of 91.57% and 90.48% strings of known and unknown length

respectively. On touching-digit pairs, the method achieved a recognition rate of 89.61%.
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Resumo

Este trabalho apresenta um método automático para o reconhecimento de

cadeias numéricas manuscritas, o qual é composto de dois estágios baseados em

Cadeias Escondidas de Markov. O primeiro estágio tem como estratégia o uso de

informação de contexto em uma abordagem de segmentação implícita, cujo objetivo é

fornecer múltiplas hipóteses de segmentação-reconhecimento para uma cadeia numérica

manuscrita devidamente pré-processada. No segundo estágio, estas hipóteses são

verificadas através do uso de um classificador de dígitos isolados. Este esquema permite

o uso de diferentes conjuntos de características e modelos de numerais: um

considerando aspectos referentes aos processos de segmentação e reconhecimento de

maneira simultanea; outro, considerando apenas aspectos relacionados ao

reconhecimento de dígitos isolados. Estes dois estágios se completam na medida em que

a verificação supre a necessidade de serem compensadas possíveis perdas de capacidade

de reconhecimento ocorridas no primeiro estágio, oriundas da necessária negociação

entre segmentação e reconhecimento. Uma completa avaliação do método foi elaborada

através de experimentos com dígitos isolados, cadeias numéricas manuscritas de

diferentes tamanhos, e pares de dígitos que se tocam, todos extraídos da base de dados

NIST.

Considerando-se um nível de rejeição igual a zero, o método apresentou uma

taxa média de reconhecimento de 98,02% para 10.000 dígitos isolados. Os experimentos

com 12.802 cadeias numéricas manuscritas de diferentes tamanhos foram realizados

valendo-se ou não do conhecimento a priori da quantidade de dígitos constituintes.

Esses experimentos mostraram que a abordagem de reconhecimento baseada em dois

estágios é uma idéia promissora,  dado que o uso de um segundo estágio de verificação

permitiu um aumento médio de 9.92% nas taxas de reconhecimento. A taxa média de

reconhecimento foi de 91,57% para cadeias numéricas de tamanho a priori conhecido e

de 90.48% para cadeias numéricas de tamanho desconhecido. A taxa de reconhecimento

para pares de dígitos que se tocam foi de 89,61%.
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11..  IInnttrroodduuccttiioonn

In spite of the major effort that has been expended to bring about a paper-free

society, a very large number of paper-based documents are processed daily by

computers all over the world in order to handle, retrieve and store information. The

problem is that the manual process used to enter the data from these documents into

computers demands a great deal of time and money.

The field of Document Analysis and Recognition (DAR) has played a very

important role in the attempt to overcome this problem. The general objective of DAR

research is to fully automate the process of entering and understanding printed or

handwritten data into the computer. Many methods for doing this have been explored

over the past years by a large number of researchers with a view to making computers

process documents reliably. The big challenge is to make computers approach human

performance in terms of understanding these documents.

1.1. Problem definition

The focus of this work is the recognition of handwritten numeral strings, an

important subject of research in the DAR domain. The principal motivation is the wide

variety of potential applications, such as: ZIP codes, bank checks, tax forms and census

forms. The challenge is to recognize numeral strings of unknown length which are not

neatly written. Some possible difficulties contributing to the unsatisfactory performance

of many methods for recognizing handwritten numeral strings are:

Size variation: this can occur among different strings (inter-string size variation) or

among digits in the same string (intra-string size variation). The latter represents a

difficult problem for recognition methods in which there is no prior segmentation of

strings into digits, since the string is processed as a whole entity.  In this case, a size

normalization method should be able to deal with both inter- and intra-string size

variations at the same time.



2

Slant variation: this may be considered as a writer’s characteristic. However, in writer-

independent methods, the slant is considered useless and merely a factor contributing to

the script variability. Moreover, in numeral strings, the slant contributes to increase the

overlap between adjacent digits.

Broken numerals: this problem is frequently encountered in two-stroke numerals, such

as 4 or 5; or it may be caused by poor writing conditions or poor quality of the scanning

and binarization processes. Broken numerals represent a difficult problem for

segmentation-based recognition methods, in which parts of broken numerals need to be

grouped before the recognition process.

Overlapping numerals: adjacent numerals may overlap one other. This problem also

contributes to increase the difficulty of segmenting the string into digits, since a

segmented subimage may contain part of another numeral.

Touching numerals: this is the most complicated problem for many reasons, among

them the existence of different kinds of touching samples. The most common touching

situations are: a) Single Point Touching, where two numerals have only one touching

point between them; b) Ligature Touching: the touching is caused by extra ligature

between adjacent numerals; and c) Multiple Point Touching: where the number of

touching points is greater than 1.

Noise: this is an useless pattern in the numeral string which is most often caused by

extra information related to poor writing conditions or different handwriting styles.

Figure 1-1 shows some examples of string difficulties.

Figure 1-1 String difficulties

Broken
numerals

Overlapping
numerals

Touching
numerals

Slanted
numerals

Size
variation
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Given these string difficulties, the basic idea of segmenting a string into separate entities

representing individual digits prior to a recognition step has frequently become

unreliable. In fact, a correct segmentation often depends on a correct recognition. By

contrast, a correct recognition of a numeral string of unknown length also requires a

correct segmentation. We can say that these statements have a “chicken and egg”

relationship. Thus, they should be approached simultaneously.

In this direction, various methods have been based on joining segmentation and

recognition processes. Some of these are described in Chapter 2. A promising approach

has been the use of an implicit segmentation-based method using Hidden Markov

Models (HMMs). This approach was originally developed in the field of speech

recognition [RABINER, 1989], where it has been applied with much success. More

recently, [BOSE & KUO, 1994] and [ELMS, et al., 1998] have shown the benefits of

applying it to recognize printed words. From these works, we may conclude that such an

approach is a promising way of integrating segmentation and recognition to deal with

the difficulties encountered in processing handwritten numeral strings. However, there

is some cost attached to this integration, which is an open problem in such a method.

This cost is a loss in terms of recognition performance caused by joining segmentation

with recognition. In other words, the problem is that a set of features and models that

shows promising performance in terms of segmentation usually does not show similar

performance in terms of recognition, and vice versa. On the other hand, to integrate

them it is necessary to define features and numeral models to contemplate both the

segmentation and recognition aspects simultaneously. Moreover, the feature set must be

extracted from a numeral string image in the same way that it is from an isolated digit

image. In summary, the challenge is to find some way to compensate for the loss in

recognition performance resulting from the necessary tradeoff between segmentation

and recognition carried out in an implicit segmentation-based method.

The proposed method for recognizing handwritten numeral strings provides a

way of joining segmentation and recognition taking into account this necessary tradeoff.

The method is based on a two-stage recognition strategy that enables the use of two sets

of features and numeral models: one taking into account both the segmentation and

recognition aspects in an implicit segmentation-based process, and another considering

just the recognition aspects in a further verification process.
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The work described in this thesis has been also reported in a number of papers.

The proposed slant normalization method for handwritten numeral strings is described

in [BRITTO et al., 1999]. Some preliminary analyses using the first stage of the

proposed method are presented in [BRITTO et al., 2000]. The contribution to string

recognition performance by using an enhanced HMM topology in the Level Building

Algorithm (LBA) framework is shown in [BRITTO et al., 2001a]. A general overview

of the proposed method and some experiments considering known-length numeral

strings are presented in [BRITTO et al., 2001b].

1.2. Research goals

The primary goal of this research is to propose a segmentation-free-based

method for recognizing handwritten numeral strings in which a prior segmentation of a

string into digits is avoided by the use of an implicit segmentation approach and a

further verification step. The idea is to provide a way of obtaining a better compromise

between segmentation and recognition. The method we have developed to deal with this

challenging problem is based on a two-stage recognition strategy enabling the use of

two sets of features and numeral models: one taking into account both the segmentation

and recognition aspects, and another considering just the recognition aspects.

 The general overview of the proposed method is shown in Figure 1-2. The

String Context-Based Stage (SCB) is responsible for finding the N best segmentation-

recognition paths for a given numeral string. For this purpose, dynamic programming is

used to match numeral HMMs against the unsegmented and preprocessed string. The 10

numeral HMMs ( λλλ 910 ...,,, ccc ) used in this stage are trained on isolated digits, but they

take into consideration contextual information regarding string slant and size variations.

In addition, features extracted from the foreground pixels of the string image columns

are used for contemplating both the segmentation and recognition processes.

The objective of the Verification Stage is to re-rank the N best segmentation-

recognition paths provided by the first stage using a powerful isolated digit recognizer.

This stage consists of an HMM-based digit classifier trained on isolated digits without

taking into account string contextual information. A new set of features combines

foreground and background information in order to improve the recognition

performance of the numeral HMMs. Moreover, 10 additional numeral HMMs
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( λλλ 910 ...,,, vrvrvr ) based on the rows of numeral images are combined with the column-

based models ( λλλ 910 ...,,, vcvcvc ) during the verification process. This combination of

column and row models ensures an accurate representation of the numeral classes.

Figure 1-2 General overview of the proposed method

To accomplish the primary goal above described, efforts are geared towards the

following:

1. To implement a preprocessing method in order to reduce problems caused by slant

and size normalization.

2. To design and implement the String Context-Based (SCB) stage.

2.1. To design and implement the Feature Extraction Method considering an

implicit segmentation-based process.

2.2. To implement a vector quantization method to produce discrete observations

from the feature space.

2.3. To implement the algorithms for training and testing the HMM numeral

models.

2.4. To design the HMM topology of the numeral models.

2.5. To train the HMM numeral models.

3. To evaluate the preprocessing method using the SCB stage.

4. To evaluate the contribution to recognition performance by using string slant and

size-based contextual information during training of the numeral models.

5. To design and implement the Verification stage.

Verification

λλλ 910 ...,,, vrvrvr

Re-ranked
hypotheses

488 - 0.710,
489 - 0.201,
408 - 0.050,  … .

λλλ 910 ...,,, ccc λλλ 910 ...,,, vcvcvc

λλλ 910

Preprocessing

FFE
Extraction

SR FBFE
Extraction

N  Best  SR
hypotheses

489 - 0.420,
488 - 0.301,
408 - 0.230,  … .

String Context-Based Stage

Verification Stage
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5.1. To design and implement the Feature Extraction Method considering the

recognition of isolated digits.

5.2. To design the HMM topology of the column and row based numeral models.

5.3. To train the column and row HMM-based numeral models.

6. To incorporate SCB and Verification stages into a segmentation-free based method

for recognizing handwritten numeral strings.

7. To test the performance on isolated and handwritten numeral strings considering a

rigorous evaluation protocol.

A literature review in Chapter 2, and some important observations obtained by

analyzing a representative data set extracted from National Institute of Standards and

Technology Special Database 19 (NIST SD19) in Chapter 4 support this proposal.

1.3. Contributions

The original contributions of this work can be summarized as follows:

• A two-stage HMM-based method for recognizing numeral strings of unknown

length. With this method, a prior segmentation of the string into digits is avoided by

the use of an implicit segmentation-based strategy and a further verification step. It

allows the combination of different feature sets and numeral models. The

verification stage is used to compensate for the loss in terms of recognition

performance brought about by integrating segmentation into the recognition process.

• A string slant normalization method, in which we assume that each connected

component (CC) in the string has its own slant. The slant and contour length of each

CC are used for obtaining the mean slant of the string. The proposed method has

shown a positive impact on the number of overlapping numerals in strings.

• The use of slant contextual information, during training of the numeral models, to

deal with the significant difference between the slant estimated from isolated digits

and that estimated from their original strings. The idea consists of using this

contextual information to provide the same conditions during training and testing of
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an implicit segmentation-based method. To this end, the slant estimated from the

original string is applied to correct the slant of the isolated digits used to train the

numeral models.

• The use of contextual information regarding intra-string size variation to deal with

the blank space above and below some digits in the string bounding box. This

problem cannot be solved by linear size normalization, in which the entire string is

reduced to a constant height. Moreover, the use of non-linear size normalization

may cause distortions on the digit strokes and broken digits.

• Enhancement of the HMM topology in the LBA framework by adding an end-state

to the HMM structure. This additional state brings about a better distribution of the

observations among the HMM states. Consequently, the LBA provides a better

definition of string segmentation cuts.

• A space model built into the numeral models in order to better represent numeral

strings. By constructing the space model inside the numeral models, the problems

associated with predicting the number of digits in an unknown-length string in the

framework of the LBA are avoided. We have evaluated the use of one space model

for each numeral class; and the use of one space model representing all numeral

classes. A two-step training mechanism is used in both experiments. This means that

the numeral models are first trained on isolated digits. Then, the space model

parameters are estimated during the second training step, which is based on digit

pairs. The parameters corresponding to the numeral models are kept the same as

estimated during the first training step based on isolated numerals.

• The use of a classifier based on the Bayes Theory to predict the string length from

the width (number of columns) of the string bounding box. The top 3 hypotheses of

the string length predictor are used to reduce the search space in the LBA

framework.
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• A complete evaluation of the combination of an implicit segmentation method and

the use of a verifier to check their segmentation-recognition hypotheses has been

conducted by considering isolated digits and handwritten numeral strings of

different lengths, as well as a set of touching-digit pairs. The experiments on

numeral strings were performed following two strategies: a) an informed strategy,

i.e. the string length (number of digits) is known. The objective of which was to

evaluate the system in different conditions, while at the same time adjusting some

important aspects regarding string normalization, feature extraction and HMM

parameters; b) a non-informed strategy, where the string length is unknown.

1.4. Outline of the thesis

This document consists of seven chapters and one appendix. In Chapter 2, a

review of handwritten isolated numeral recognition and handwritten numeral string

recognition is presented, in which the principal investigations that have allowed

improvements to be made in the recognition of isolated handwritten numerals are

described. Some recent works and the results are presented. Moreover, different

approaches to the recognition of handwritten numeral strings are described and

examples given. A discussion of these approaches is included.

Chapter 3 introduces the background theory relevant to the handwritten numeral

string recognition method described in this thesis. The first topic is related to Hidden

Markov Model, since this modeling method is used in both the SCB and verification

stages of the proposed method. We present the main HMM concepts, types of HMMs

and the algorithms to implement this statistical technique for modeling real problems.

These algorithms are related to the process of training and scoring HMMs. In addition,

the K-means vector quantization algorithm is described. This algorithm is necessary for

mapping our feature space onto the discrete observations used in the proposed numeral

HMMs. Finally, a brief review of the Bayes theory is provided. This theory is used to

implement a classifier in order to predict the string length (number of digits) from the

bounding box width (in columns).

In Chapter 4, the preprocessing techniques used to transfer the handwritten

numeral string into a more appropriate form are described. The general idea is to reduce

script variability, while specific goals are dependent on the proposed recognition



9

method. The first topic is related to slant normalization in an implicit segmentation-

based method. Different word slant normalization methods are presented and discussed.

A word slant normalization method is selected and modified in order to improve the

results for handwritten numeral strings. We assume that each connected component

(CC) in the string has its own slant. The slant and contour length of each CC are used

for obtaining the mean slant of the string. Both the original and modified methods are

evaluated by means of some interesting analyses on the NIST SD19 database. These

analyses show: a) the positive impact of slant correction on the number of overlapping

numerals in strings, and b) the difference in normalizing isolated numerals based on the

slant estimated from their own images and the slant estimated from their original string

images. A second topic describes a size normalization method which also takes into

account an implicit segmentation-based strategy for recognizing numeral strings. This

method is based on non-linear normalization and is designed to deal with inter- and

intra-string size variations at the same time. However, the recognition results in Chapter

6 have shown that training the numeral HMMs taking into account the intra-string size

variation can be used to avoid possible distortions on the digit strokes caused by a non-

linear size normalization method. Finally, the method proposed in [SUEN et al., 1992]

for smoothing binary images is described. We use it to smooth the string contour in

order to reduce the presence of spikes and notches caused by scanning noise or by the

slant normalization method. All analyses performed in this chapter support the idea of

using contextual information regarding string slant and digit size variations within the

string to train the numeral HMMs in the SCB recognition stage.

In Chapter 5, the proposed method, which can be categorized as a segmentation-

free approach, is described in detail. This description starts with a general overview,

then each stage and the corresponding modules are described. The three modules of the

SCB stage are: Preprocessing, Foreground Feature Extraction (FFE) and Segmentation-

Recognition (SR). We describe the foreground features and the HMM models used to

represent the digit classes in the SCB stage. An end-state in the HMM topology has

proved useful for providing a better distribution of the observations among their states.

This has brought about an improvement in terms of segmentation performance in the

SCB stage. This additional state in the HMM topology also makes it possible to

incorporate contextual knowledge regarding strings into the numeral models in the SCB
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stage by means of a string-based training method used to build a space model inside of

the numeral models. Finally, we present the Verification stage, the purpose of which is

to re-rank the best hypotheses generated by the SCB stage. A new set of features and

numeral models is defined to ensure an accurate recognition of isolated digits.

Chapter 6 presents a rigorous experimental protocol for implementing and

evaluating the proposed string recognition method. Experiments are performed

considering isolated digits and numeral strings of different lengths extracted from the

NIST SD19 database. In the first experiments, string recognition is based on an

informed strategy, i.e. the string length (number of digits) is known. The objective of

using this strategy is to evaluate the system in different conditions, while at the same

time adjusting some important aspects regarding string normalization, feature extraction

and HMM parameters. A non-informed strategy is used in the last experiments.

The protocol used to implement and evaluate the proposed method consists of

three steps. In the first step, called SCB Stage Construction and Evaluation, a baseline

system composed of Preprocessing, FFE and Segmentation-Recognition (SR) modules

representing the first stage of the numeral string recognition method is evaluated. The

Preprocessing module is constructed taking into account the preliminary analyses

described in Chapter 4. The Preprocessing and the SR modules are experimentally

defined and evaluated. In a second step, called Verification Stage Construction and

Evaluation, the SCB stage is modified in order to provide the best segmentation-

recognition paths or hypotheses. The verification stage is used to re-rank these

hypotheses. For this purpose, an isolated digit classifier is developed to check each

string segment provided in the segmentation-recognition hypotheses in the SCB stage.

In the last step of the evaluation protocol, the system is evaluated using a non-informed

strategy, where the string length is unknown. An error analysis is presented and all the

experimental results are discussed.

In Chapter 7, the conclusions and some directions for future works are

presented, while in Appendix A the processes used for extracting numeral strings from

the full-page forms available in the Special Database 19 (SD19) of the National Institute

of Standard Technology (NIST) are described. With the handwritten numeral strings

extracted from these forms, we create a database called NString_SD19 for training,

validating and testing recognizers which go beyond the isolated digit classification.
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Moreover, we describe the process used to provide an isolated digit database in which

each digit sample has a link with its original string.
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22..  SSttaattee  ooff  tthhee  AArrtt

In this chapter, we address the main topics related to the proposed method:

handwritten isolated numeral recognition, and handwritten numeral string recognition.

First, we present the main investigations that have made possible improvements in

recognition performance of isolated handwritten numerals. Some recent work is briefly

described in terms of features, types of classifiers, test databases and results. Moreover,

different approaches for recognizing numeral strings are presented and discussed. A

general discussion is also presented.

2.1. Handwritten numeral recognition

Many approaches to solving the handwritten numeral recognition problem have

been proposed in recent years due to its numerous possible applications.  Drawing up a

taxonomy of these approaches is difficult, since their methodologies overlap. However,

research in this field has basically considered investigating: a) feature extraction

methods; b) classification methods; and c) system architectures based on different

strategies, such as combinations of multiple classifiers, the use of multiple templates,

and the use of verification modules.

The investigation of feature extraction methods has gained considerable

attention since a discriminative feature set is considered the most important factor in

achieving high recognition performance. In [TRIER et al., 1996] a survey of feature

extraction methods for off-line recognition of segmented characters is presented. The

authors describe important aspects that must be considered before selecting a specific

feature extraction method. Another interesting work of shape analysis techniques can be

found in [LONCARIC, 1998].

In general, the feature extraction methods for numeral recognition reported in

the literature have been based on two type of features, statistical and structural. The

statistical features are derived from statistical distributions of points, such as zoning,

moments, projection histograms or direction histograms [KIMURA & SHRIDHAR,

1992][GADER & KHABOU, 1996][CHEUNG & YEUNG, 1998]. Structural features
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are based on topological and geometrical properties of the character, like strokes and

their directions, end-points, or intersections of segments and loops [PAVLIDIS,

1986][HIRANO et al., 1997][LEE & GOMES, 1997][CAI & LIU, 1998].

Many researchers have explored the integration of structural and statistical

information to highlight different character properties, since these types of features are

considered to be complementary. In [CAI & LIU, 1998] structural and statistical

information is integrated into an HMM-based classifier. The authors use state-duration

adapted transition probability distribution and macro-states to overcome the weakness

of the HMMs in modeling structural features. Both statistical and structural features are

extracted from chain code (locations, orientations and curvatures). The recognition rate

is 96.16% in 2,711 digit samples extracted from the CEDAR database.

Another multifeature-based system is proposed in [HEUTE et al., 1998]. In this

work, a combination of seven different families of features is proposed in order to arrive

at a complete character description. These features are divided into global features

(invariant moments, projections and profiles) and local features (intersections with

straight lines, holes and concave arcs, extremities, end-points and junctions). A set of

53,324 digits extracted from the NIST database is used to test the system. The

recognition, rejection and substitution rates are 90.82%, 8.93% and 0.25% respectively.

Alongside these investigations of feature extraction methods, many other studies

have addressed classification methods. Different classifiers have been used for

handwritten numeral recognition, such as statistical [GILLOUX, 1994][CHEUNG &

YEUNG, 1998][PARK & LEE, 1998], structural [SHRIDHAR & BADRELDIN,

1986][HIRANO et al., 1997] and neural nets [CAO et al., 1995][LIM & CHIEN,

1998][ZHANG et al., 1998]. In recent years, significant contributions to increasing

recognition rates have been achieved with different combinations of classifiers [XU et

al., 1992][LAM & SUEN, 1995].

An interesting investigation can be found in [KIM et al., 1997]. The authors

combine all three possible cases of five kinds of neural network classifiers with

different feature sets: gradient, structural, UDLRH (Up Down Left Right Hole), Mesh,

and LSF (Large Stroke Feature). Three combination methods are used: majority voting,

borda count and LCA (Linear Confidence Accumulation). In the majority voting

method, the output of the neural network classifier (real values ranging from 0 to 1) is
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transformed into 1 or 0, depending on whether it is the highest output or not. In the

borda count method, the output of the neural network classifier is transformed into a

decreasing rank order, using:

rank
rank

t
max

1
1

−−= . (2.1)

Finally, in the LCA method, the output of the neural network classifier is used

without any transformation. The objective is to determine which subset of classifiers

achieves the optimal combination results. The test data for digit recognition are taken

from the NIST database. The number of samples used is 10,909. The gradient, structural

and UDLRH combination supplies the best results, using a borda count combination

method. The recognition, rejection and substitution rates are 98.62%, 0.42%, and 1.39%

respectively.

In [HIRANO et al., 1997], a statistical classifier based on local features

(distribution of local directions extracted from contours) and a structural classifier based

on contour segments and loops are combined. The objective is to compensate for the

difficulty of using statistical features in the recognition of patterns, as they are either

seriously distorted or similar to one other in shape, or both.  First, the statistical

classifier recognizes the input pattern. Subsequently, the structural classifier verifies the

input pattern as one of two higher ranking candidates acquired by the statistical

classifier. The IPTP digit database is used for testing (17,916 samples). The recognition

rate is 98.87%.

In recent work, different methods for combining the decisions of two classifiers

based on RBF (Radial Basis Function) networks are examined by [CHIM et al., 1998].

The feature set is composed of diagonal and partitioned radial projections, and four-

directional edge maps of the image. Four methods for combining the two classifiers are

investigated: 1) one classifier is used to process only rejected samples from the other

classifier; 2) both classifiers classify each sample independently, and the system assigns

a label only when both classifiers agree on its identity; otherwise, the sample is rejected

without further verification; 3) the label is assigned as according to the classifier that

has the higher output activation level; and 4) both classifiers output each sample

independently, and the system assigns the label based on an average Bayes classifier

formulation. The highest recognition rate is achieved when one classifier is used to
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process only rejected samples from the other (first method). During the experiments,

620 samples of segmented, hand-printed characters written by 8 different people were

used. The recognition, rejection and substitution rates are 96.61%, 2.2%, and 1.13%

respectively.

In addition, investigations of new strategies for handwritten numeral recognition

have led researchers to figure out alternative ways to treat the variability intrinsic to

handwritten numerals. In this context, three examples are interesting: 1) In [CHEUNG

& YEUNG, 1998] a set of 23 digit prototypes and a deformable model-based

recognition in a Bayesian framework are proposed. Without any discriminatory training,

they achieved an accuracy of 94.7% with no rejections on a subset of 11,791 images by

100 writers extracted from the NIST database; 2) In [ZHOU et al., 1997] the authors

proposed a rule-based structural classifier as a verification module (VM) for a

Multilayer Feedforward Locally Connected Network. In their system, two levels of

verification are considered: low level (result confirmation by structural features) and

high level (cross-check by user-specified rules). Another important aspect is that the

VM never changes the result, although it may provide some possibility for rejection

repair. To test the system, 18,000 numerals randomly selected from 20 forms written by

different users were used. The recognition, rejection and substitution rates are 98.95%,

0.1% and 0.05% respectively; 3) Correia and Carvalho [CORREIA & CARVALHO,

2000] propose an interesting approach for recognition of unconstrained handwritten

numerals in which the biorthogonal spline wavelets Cohen-Daubechies-Feauveau

(CDF) 3/7 are used as a feature extractor. A multilayer cluster neural network is trained

with the backpropagation momentum algorithm. The system is evaluated on 6,000

isolated numerals from the CENPARMI database – 4,000 for training and 2,000 for

testing. The recognition, rejection and substitution rates are 94.7%, 1.8% and 3.5%

respectively.

Other important contributions in this field are found in Table 2-1. It is important

to point out that the recognition, rejection and substitution rates reported are not directly

comparable, since these results are based on different databases.
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Table 2.1 Other contributions to handwritten numeral recognition
Reference Feature  extraction

method
Classification  method Test

database
Recog.
rate (%)

Rejection
rate (%)

Subst..
rate (%)

[FATAVA et al.,
1994]

Multiple features
(512-bit feature
vector)

1) Gradient Features
2) Structural features
(micro-strokes)
3) Concavity  features

GSC (Gradient, Structural,
Concavity)  classifier

2,700 digits
from
various
databases

98.87 - 2.13

[GADER, 1996] 1) Automatic feature
generation guided by
two different
evaluation measures:
orthogonality and
information.

2) Down-sampled
normalized image
(12x9) using local
averaging in 2x2
regions.

3) Transition features
(background pixels to
foreground pixels)

4) local, two-
dimensional
convolutions

Four  neural networks, one
for each set of features.
The outputs of these
classifiers are averaged.

10,000 digits
from ERIM
(Environmen
tal Research
Institute of
Michigam)

98.0 - 2.0

[LIN et al., 1997] 1) 288 statistical
features reduced to 32
features using
principle component
analysis

2) 20x20 binary
image

Two  neural networks:
1) Backpropagation
network  (BPN)

2) Self-organizing mapping
(SOM)

A third classifier (BPN) is
used to combine the results

3,000 digit
samples from
NIST
database

98.24 0.0 1.76

[TEO &
SHINGHAL,
1997]

1) Structural features
extracted by
decomposing the
binary image into
nodes (loops, paths,
threads)

2) 16x16 binary
image

Hybrid classifier
1) Rule based classifier
2) 8 neural
nets, one for each
candidate set, which are
composed of 3 classes.

The rule based classifier
outputs potential digit
classes. A potential class
Ci  is chosen. The neural
nets that correspond to the
candidate sets where Ci
appears are invoked. The
recognition result is
defined using the highest
confidence value output by
the neural nets.

20,000 digits
from NIST
database

93.21 3.47 3.26
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Table 2-1 – Other contributions to handwritten numeral recognition (Cont.)
Reference Feature  extraction

method
Classification  methodTest database Recog.

rate (%)
Rejection
rate (%)

Subst.
rate (%)

[LEE & GOMES,
1997]

1) Structural features
(cavities, crossing
sequences, number of
intersections with
principal and
secondary axis)

2) Statistical features
(pixel distribution)

3) Binary image after
scale normalization,
thinning and
elimination of
spurious segments

1) Topological feature
classification (rule
based classifier)

2) Neural
classification (Four
Hopfield neural
networks used in two
steps)

606 numeral
images extracted
from 121
Brazilian bank
checks

92.4 - -

[KIMURA et al.,
1998]

Gray scale pattern
obtained by counting
the number of black
pixels in 10x10
blocks of binary
numeral image.

Auto-associative
Neural Networks (one
for each digit class)

14,979 samples
collected by IPTP

98.11 - -

[ZHANG et al.,
1998]

Binary image Elastic Net Models
(one for each digit
class).

A  classifier is
obtained by using  a
decision module
which compares the
distance between the
reconstructed vector
and a model. A
minimum operator is
used to associate the
class of a model with
the smallest error.

10,000 digits
from NIST
database

95.7 - -

[CAI & LIU,
1998]

Statistical and
structural features
extracted from the
chain code.
(locations,
orientations and
curvatures)

HMMs (one model per
class)

2,711 digits from
CEDAR
CDROM1

96.16 - -

[DELEVSKI &
STANKOVIC,
1998]

Morphological and
Topological
properties

Digits are
topologically
represented by
graphs,  and
morphological
properties of those
graphs are extracted
(forks, joints, relative
branch lengths,
branch angles, branch
positions, etc.)

Search for a graph
which better
represents the
incoming digit.

2,213 samples
from CEDAR
database

99.37 0.27 0.36
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2.2. Handwritten numeral string recognition

Another important subject of research in the document analysis and recognition

field has been the recognition of numeral strings. Different approaches have been

proposed in the literature to deal with this challenging problem. Usually, the taxonomy

for these methods takes into account the strategy employed to recognize the string, top-

down or bottom-up.

In methods using a top-down strategy, also called holistic methods, string

recognition is performed considering the whole string, without a priori segmentation

into digits or small fragments. The price of avoiding the segmentation problem is to

constrain the string recognition system to a limited lexicon. Usually this kind of

approach has been used for the handwritten recognition of cursive words (for example,

city names or street names in mail address recognition). An example of a holistic

method for the recognition of touching-digit pairs can be found in [WANG et al., 1998].

On the other hand, in methods using a bottom-up strategy, also called analytic

methods, a numeral string is recognized from its components, such as digits or primitive

segments. These methods require either an explicit or an implicit segmentation process.

A survey of segmentation strategies is provided by [CASEY & LECOLINET, 1996],

where the analytic methods are divided considering the strategy used for string

segmentation:

• The dissection strategy, which consists of segmenting the numeral string

image into meaningful components (individual numerals) based on

"numeral-like" properties [SHI et al., 1997][NISHIWAKI & YAMADA,

1998].  Generally this is a difficult task, due to the possible numeral string

difficulties described in Chapter 1.

• The recognition-based strategy, which searches the numeral string for

components that match numeral classes.  In other words, isolated numeral

models are matched against an unsegmented numeral string [ELMS,

1996][PROCTER & ELMS, 1998];

• The hybrid strategy, or over-segmentation, where a dissection algorithm is

applied to the numeral string with the objective of segmenting it into many

primitive segments. An optimization algorithm is then used to find the most
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promising segmentation. Normally, a split-and-merge scheme based on

graphs [NISHIDA & MORI, 1994] [LETHELIER et al., 1995] [HA et al.,

1998] [OLIVEIRA et al., 2000] or dynamic programming [GADER et al.,

1997] has been used to implement this strategy.

 Another taxonomy divides the analytic methods into two approaches: a)

segmentation-based methods which use an explicit segmentation of the string into

numerals without the aid of a numeral recognizer; and b) segmentation-free methods

which may use implicit or explicit segmentation. In both, a character recognizer is used

to aid the segmentation process. Notice that ‘segmentation-free’ does not mean that no

segmentation process is involved. It means rather that the segmentation process is

performed with the aid of a numeral recognizer. The recognition can be performed

simultaneously with the segmentation process (implicit segmentation), or afterwards, in

order to search for the best way to assemble primitive segments to form the string

(explicit segmentation).

2.2.1 Some important contributions

In [WANG et al., 1998], the GSC (Gradient, Structural and Concavity) digit

recognizer proposed in [FAVATA et al., 1994] is adapted to recognize pairs of touching

digits (00 to 99). The grid used for feature extraction is larger than that used for isolated

digit recognition (4x6 instead of 4x4), and the pattern width is divided into three zones.

Left and right zones are considered more useful than the central zone, since they better

represent the numerals involved.  For this purpose, the contribution of different zones is

weighted. The recognition rate on a set of 523 touching-digit pairs extracted from the

US postal address database is 86.8%.

In [SHI et al., 1997], the authors proposed a system for segmentation and

recognition of totally unconstrained handwritten numeral strings. This segmentation-

based approach consists of three modules: preprocessing, segmentation and recognition.

In the preprocessing module, the objective is to segment the numeral string image into

blobs containing one or more numerals. Initially, broken strokes caused by binarization

are grouped by means of a filter, which blurs the input image of the numeral string to

obtain a masked image. For that, each vertical foreground run-length is increased by one

pixel. However, this filter is not sufficient to group broken parts caused by two-stroke



20

digits, such as 4 or 5. For this purpose, a procedure is proposed to group "good small

components" to their closest neighbors using heuristic rules based on distance measures

between strokes.

In this procedure, a first set of heuristic rules is used to remove noise. Small

components far away from the others and long slim components are candidates for

noise. Afterwards, a second set of heuristics is derived from the base line of the numeral

string and its skew information, plus the average height and average width of the

resulting components. This heuristic set is used to classify the resulting components into

“good big”, “good small’ and “bad small components” from noise candidates.

 The components classified as good small components are grouped to their

neighbors in a blob. This is done by measuring the distances from the center horizontal

position of the good small components to their left neighbors’ right horizontal position,

and to their right neighbors’ left horizontal position (see Figure 2-1).

Figure 2-1 Grouping of broken parts (adapted from [SHI et al., 1997])

The number of numerals in the blob is estimated using a horizontal intersection

method.  Then, blobs with estimated number of numerals greater than one are sent to the

segmentation module. The blob contour is used in this segmentation process. The

objective is to detect significant right turns in the blob contour that are considered as

touching points.  For this purpose, the authors first compute vectors P_in leading into a

contour point P from its several previous neighboring contour points, and P_out going

out of P to its next several contour points. These vectors are normalized and placed in a

Cartesian coordinate system with P_in along the x-axis. A significant right turn satisfies

the following conditions:

01221 <− yxyx (2.2)
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THRyxyx <− 2211 (2.3)

where THR  is experimentally determined (a number close to zero), ( )yx 11,  are the

coordinates of P_in, and ( )yx 22 ,  are the coordinates of P_out. Equation 2.2 indicates

that the turn is to the right, and equation 2.3 indicates that the turn is significant. THR

ensures that the angle θ  made by P_in and P_out is close to 90º. Figure 2-2 shows that

the distance between the thresholding line and the y-axis  gives a threshold for

determining a significant right turn.

Figure 2-2 The distance between the thresholding line and the y-axis  gives a threshold for
determining a significant right turn (adapted from [SHI et al., 1997])

Figure 2-3 The significant right turning points and their opposite points divide the contour
into contour pieces (adapted from [SHI et al., 1997])

The significant right turning points and theirs opposite contour points divide the

contour into contour pieces, as shown in Figure 2-3. The authors assume that the

number of numerals in the image input to the segmentation module is known. The

segmentation result is obtained based on a histogram of vertical extents, which is

calculated considering the vertical slant. A divide-and-conquer scheme is used to find N

decision lines (segmentation lines) for N+1 numerals in the blob image. The intervals

closest to the vertical bisecting line, and the minimal point within the valleys, are used
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to define each decision line. Figure 2-4 shows a histogram of vertical extents used to

find a decision line, and the segmentation result.

Figure 2-4 Segmentation proposed in [SHI et al., 1997]: a) Histogram of vertical extents
used to find a decision line, and b) the segmentation result.

Finally, all the blobs with a single numeral are sent to the recognition module.

The GSC isolated digit recognizer developed in CEDAR is used.  Two experiments are

reported. In the first, 495 zipcode images from CEDAR are used, for which an 85%

field recognition rate and 97% segmentation rate are achieved. In the second, a set of

2,579 zipcode images is used. The recognition rate is 85.7%.  For both, zero rejection is

considered.

In [NISHIWAKI & YAMADA, 1998] we have a numeral string recognition

method using character-touching-type verification strings. The authors propose a new

segmentation method for recognition of numeral strings as a solution to mis-

segmentation, which produces false digit candidates in conventional segmentation-

based approaches. The method is based on checking touching type between a pair of

character candidates. If the touching type between recognition results of the character

candidates is impossible, they are rejected. Six touching types are used, which are

shown in Figure 2-5.

The method consists of three processes: preprocessing, lattice generation and

lattice estimation. Preprocessing erases granular noise and corrects the slant of the

numeral string. The lattice generation process consists of detecting touching types in the

numeral string image by comparing the length of a vertical black pixel run (Vrun) with

that of the horizontally adjacent one. The leftmost and rightmost Vruns of each

    
    a) b)
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component are also detected. A set of heuristics is used in order to detect each touching

type in the image, resulting in a lattice of digit candidates. In this process, each digit

candidate is still checked using the following heuristic rule: If the width is wider than a

threshold value, the character candidate is eliminated from the lattice.

Figure 2-5 Touching types (adapted from [NISHIWAKI & YAMADA, 1998])

In the lattice estimation process, for each digit candidate a confidence value is

calculated using an isolated character recognizer. Subsequently, all the verification units

(pairs of digit codes and their touching type) are checked. If one of them is impossible,

the confidence value of the digit code in it decreases by 20. Finally, the optimal path is

selected from the lattice (see Figure 2-6).  Experimental results are not reported.

Figure 2-6 Example of a lattice and its possible segmentation paths (adapted from
[NISHIWAKI & YAMADA, 1998])

In [PROCTER & ELMS, 1998], a segmentation-free method using implicit

segmentation for the recognition of printed words, proposed in [ELMS, 1996], is

applied to recognize handwritten numeral strings. Elms has used HMM-based

recognition to avoid a prior segmentation of printed words into characters.
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The feature extraction method proposed by Elms consists of a vertical shape

profile. A shift-invariant shape feature is extracted from each column of pixels

representing a pattern of bits. A shift-invariant Hamming distance measure is defined

for shape quantization, and vector quantization is used to produce discrete observations

from the feature space. The result is a codebook with 32 possible bit patterns. In

addition, to avoid confusion caused by the character pairs (pb) and (dq) a COG (Center

of Gravity) feature represents the relative center of pixel mass with respect to previous

columns of pixels. During the recognition process, the input image is scanned from left

to right, and for each vertical column a shape feature and a COG are calculated. The

LBA [RABINER & JUANG, 1993] is used to match character HMMs against the input

image.

In [PROCTER & ELMS, 1998], the same approach is used to recognize numeral

strings of unknown length. The focus of their work is a study of the maximum number

of levels in the LBA. The objective is to determine the point where exploration of

further levels would not significantly improve system results. In a first attempt, the

maximum number of levels for each field is defined as proportional to the width of the

field in pixels, L = x/x0, where x is the width of the observation sequence in pixels, and

x0 is a constant (between 10 and 27). The best performance is achieved with x0 = 22,

which is equivalent to approximately two levels per digit for the test data used. In

another attempt, an adaptive level building is used. In this case, the exploration of

further levels stops when the results are not significantly improved. This is done by

examining the probabilities of the matches produced at each level of the LBA. The LBA

is terminated when the probability of the best match at the current level (or next 2 or 3

levels) is lower than that of the previous level.

Experiments were conducted using 6,500 digits in 1,400 fields (length 2,3,4,5,6

and 10 digits) extracted from the NIST Special Database 1. In the first experiment (x0 =

22), the field and isolated digit recognition rates are 74.7% and 93.25%, respectively.

For the adaptive level building, the best results are 74.2% and 93.25% respectively.

Another segmentation-free method is described in [GADER et al., 1997]. This

method uses an over-segmentation strategy. The first step consists of segmenting the

handwritten numeral string into several primitive segments (digits or part of digits).

Subsequently, a Kohonen SOFM (Self-Organizing Feature Map) plus an MLFN
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(Multilayer Feedforward Neural Network) are used to assign low digit-class

membership values to the primitives that represent parts of digits.  Since the activation

function at an SOFM node represents the distance between the weight vector at the node

and an input pattern, the SOFM measures the typicality (or fuzzy set membership

value).  Thus, the SOFM output is used as the input to the MLFN, which assigns low

confidence values to non-digits.

 Finally, dynamic programming finds the best way to assemble the primitive

segments to form a digit string, considering each potential number of digits (see Figure

2-7). Recognition rates are not reported.

Figure 2-7 A numeral string over-segmented into digits or parts of digits,
which are assembled to form a numeral string using dynamic
programming (adapted from [GADER et al., 1997]); a) result considering
the string length = 3; b) result considering the string length = 4.

In [HA et al., 1998], the authors combine segmentation-based and segmentation-

free methods to construct an off-line handwritten numeral string recognition system.

The architecture is shown in Figure 2-8. In the pre-segmentation module, the string

image is divided into partial images (PIs). For this purpose, small components are

eliminated and broken parts are grouped to their neighborhood, taking into account a set

of heuristic rules. The resulting PIs are sent to the Digit Detection module, where they

are classified as isolated digits or group of digits. The PIs classified as isolated digits are

considered meaningful partial shapes (PSs).

 On the other hand, the PIs classified as groups of digits are sent to the

Segmentation-free module.  In this module, a split-and-merge approach segments each
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PI into partial shapes, which are merged into meaningful PSs , susceptible to represent

individual numerals. PI segmentation consists of thinning and removing singular points

such as end-point, T-joint or crossing point. In this process, each resulting connected

component is labeled and expanded within the borders of the original PI, generating

new PSs. In order to avoid exponential complexity during the merge of these PSs into

meaningful PSs some spatial constraints are used.

Figure 2-8 System architecture proposed in [HA et al., 1998]

These spatial constraints have been proposed in a similar segmentation-free

approach based on a split-and-merge method in [NISHIDA & MORI, 1994], as follows:

a) the characters are aligned horizontally; b) the segments are indexed from left to right;

c) a character should not be very wide compared to its height; and d) a character should

not be very short compared to its height. Moreover, a PS must satisfy additional size

and shape constraints to be considered meaningful. Afterwards, each meaningful PS is

sent to a digit recognizer. The class, score and PS coordinates are added to an attribute

table. An additional score is computed, based on the digit score and how well the PS is

embedded in the PI. The objective is to evaluate the quality of the PSs.

 All possible PS combinations are represented by means of a directed and

weighted graph generated from the attribute table.  The cost of each node is derived

from the PS scores. A best-first graph search is used to find the path with the lowest

String image
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Module

Presegmentation

Global Decision

Digit Detection

Digit
Recognition

Server

Recognition
Result/Rejection
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cost. Some heuristics are used to treat additional noisy information in the graph

(ligatures between digits, hyphen signs, underscores, etc.).  Finally, the best path is sent

to a global decision module, where the recognition result is accepted or rejected. The

lowest score among all scores for the whole string (there is one for each digit) is

assigned to the string.

An experiment using 4,925 samples of numeral strings (2, 3, 4, 5 and 6 digits in

length) from the NIST database is reported. The global recognition and rejection rates

are 92.7% and 0%, respectively. The recognition rates for numeral strings composed of

2, 3, 4, 5, and 6 digits are 96.2%, 92.7%, 93.2%, 91.1% and 90.3% respectively.

Another experiment uses 495 numeral strings (5 and 9 digit lengths) from the CEDAR

database. A recognition rate of 83.6% is reported, with zero rejection.

An integrated segmentation and recognition method using a cascade neural

network composed of 747 nodes and 33,400 connections is proposed in [LEE & KIM,

1999]. This neural network is used to train the spatial dependencies in connected

handwritten numerals. The general system architecture is shown in Figure 2-9. The

string is preprocessed in order to reduce slant and size variations. Then, as a sliding

input window scans the string with a step of two pixels (see Figure 2-10), the string is

presegmented and the cascade neural network determines whether or not the

segmentation is correct. If the segmentation is correct, the network classifies what is

centered in the input window. For training the system, the content of the input window

is paired with a target output vector representing what is centered in the input window at

each stopping point.

Figure 2-9 System architecture proposed in [LEE & KIM, 1999]
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Figure 2-10 Sliding window proposed in [LEE & KIM, 1999]

During recognition, the activation value of each output unit represents what is centered

in the input window. When the input window is centered in a character, the output unit

corresponding to that character has a high activation value and others have a low value.

In contrast, when the input window is centered between characters, a noncharacter class

unit has a high activation value. A set of 5,000 numeral strings extracted from NIST

database and equally distributed into 5 string classes (2,3,4,5 and 6-digit string) is used

for testing. The recognition rates for numeral strings composed of 2, 3, 4, 5 and 6 digits

are 95.23%, 88.01%, 80.69%, 78.61% and 70.49% respectively. The level rejection rate

is not reported.

In [MATAN et al., 1992], an extended backpropagation learning neural network

as a space displacement neural network (SDNN) is proposed. The authors use the

SDNN in order to avoid replication of the recognizer at all possible locations across the

input string. In their method, a size-normalized image is passed to the recognition

system to generate a feature map. Then, the feature map is used to segment the string. A

set of 3,000 numeral strings composed of 5 digits extracted from the NIST database is

used for testing. The string recognition and error rates considering 0% string rejection

rate are 66.3% and 33.7%, respectively.

In [MATIN et al., 1993], the authors propose the exhaustive and saccadic scan

methods for integrating segmentation and recognition of handwritten strings. In the first

scan method, a backpropagation learning neural network exhaustively scans a numeral

string, and it is trained to recognize whether its input window is centered over a single

digit or between digits. When its input window is centered on a digit, it is classified.

The weakness of this method is that it generates too many candidate segments to be
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efficient. In the saccadic scan method, the neural network is trained not only to

recognize whether a character is centered on its input window, but also to compute

ballistic “eye” movements that enable the input window jump from one digit to the next.

A set of 5,000 numeral strings extracted from the NIST database and equally distributed

into 5 string classes (2-,3-,4-,5- and 6-digit string) is used for testing. No recognition

rate has been reported. Thus, we calculated it from the reported reject and error

rates.Using the exhaustive scan method, the string rejection rates for numeral strings

composed of 2, 3, 4, 5 and 6 digits considering a 1.0% string error rate are 4.8%, 11.1%,

19.1%, 23.4% and 35.7% respectively. The corresponding recognition rates are 94.2%,

87.9%, 79.9%, 75.6% and 63.3% respectively. For the saccadic scan method, the string

rejection rates considering a 1.0% string error rate are 6,4%, 12,7%, 19,5%, 23,2% and

26,8% respectively. The corresponding string recognition rates are 92.6%, 86.3%,

79.5%, 75.8% and 72.2% respectively.

Keeler and Rumelhart use a neural network and the backpropagation algorithm

to propose a system that simultaneously segments and recognizes connected characters

[KEELER & RUMELHART, 1992]. Their Self-Organizing Integrated Segmentation

and Recognition (SOISR) system takes position-independent information as targets and

self-organizes the activities of the units in a competitive way to infer the positional

information. A set of 5,000 numeral strings extracted from the NIST database and

equally distributed into 5 string classes (2-,3-,4-,5- and 6-digit string) is used for testing.

No recognition rate has been reported. Thus, we calculated it from the reported reject

and error rates. The string rejection rates for numeral strings composed of 2, 3, 4, 5 and

6 digits considering a 1.0% string error rate are 12.0%, 15.0%, 23.0%, 28.0% and

37.0% respectively. The corresponding string recognition rates are 87.0%, 84.0%,

76.0%, 71.0% and 62.0% respectively.

In [FUJISAWA & NAKANO, 1992], the authors propose a region-based

segmentation method for character segmentation and recognition, which takes into

account the stroke shapes of touching patterns. The stroke shapes are analyzed in the

case of touching characters. This system first extracts the connected components (CCs)

from a numeral string. These CCs are analyzed in terms of spatial interrelations. They

can be grouped into meaningful character patterns or separated by means of a method

for finding the touching position. Multiple hypotheses and verification based on digit
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recognition are used to deal with ambiguities. A set of 5,000 numeral strings extracted

from the NIST database and equally distributed into 5 string classes (2-,3-,4-,5- and 6-

digit string) is used for testing. The string recognition rate for numeral strings composed

of 2, 3, 4, 5 and 6 digits are 89.79%, 84.64%, 80.63%, 76.05% and 74.54% respectively.

The level rejection rate is not reported.

    A method to recognize handwritten numeral strings without an explicit

segmentation is presented in [YOON et al., 2000]. The authors adopt the concept of

continuation and introduce the technique of subgraph matching to predefined

prototypes. Continuation is a fundamentaly intuitive property of perceptual grouping in

line segregation. A natural line, including not only the straight line but also the curved

line, possesses the property of continuation if it has a smooth property of orientation

over the line. This approach makes the segmentation of strings into digits unnecessary,

since it does not guess the possible break positions and also because it recognizes a digit

even if additional strokes are attached to it. A set of 100 numeral strings extracted from

the NIST database and distributed into 6 string classes: 2_digit (24 samples), 3_digit (21

samples), 4_digit (21 samples), 5_digit (17 samples), 6-digit (12 samples) and 10_digit

string (5 samples) is used for testing. The string recognition rates for numeral strings

composed of 2, 3, 4, 5, 6 and 10 digits are 92.0%, 100.0%, 95.0%, 94.0%, 92.0%, and

100.0% respectively. The level rejection rate is not available.

2.3. Discussion

In the above sections, we have presented a brief review of handwritten isolated

numeral recognition, since a string is usually recognized from the recognition of its

individual numerals. In this review, we have included some investigations which have

contributed to increasing recognition rates in recent years, such as:

.   

• The combination of different feature types: in particular the combination of

structural and statistical features, which has ensured an accurate character

description, given their complementary properties;

• The combination of multiple classifiers, which has been important to allow the

use of several feature extractors since different types of features may need

different types of classifiers;
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• The use of a verification module as a separate part of the recognition process,

which permits the use of different knowledge levels to verify the recognition

results, such as an additional set of features (low-level), or rules specified by the

user (high-level).

Even with recognition rates close to 99% for handwritten isolated numerals, we can say

that there is still a gap between human and machine performances. This gap is even

greater when we consider the recognition of handwritten numeral strings, and is caused

by the string difficulties described previously in this chapter. However, there have been

important contributions on handwritten numeral string recognition. For example, some

work has considered a holistic approach to string recognition, since this has been

successfully used to recognize cursive words from a dictionary. The advantage of this

approach is that the segmentation process is completely avoided, but the disadvantage is

that it is unsuitable for handwritten strings of unknown length. It is nevertheless useful

in dealing with specific problems, such as the recognition of touching-digit pairs, as

proposed in [WANG et al., 1998].

The more conventional analytical methods are strongly based on heuristics.

These methods attempt to segment the numeral string into individual numerals

(segmentation-based methods). Thus, broken numerals represent a significant problem,

since their parts need to be grouped to form a meaningful component that is able to

represent an individual numeral. Usually, a set of heuristic rules is used to group parts

of broken numerals. These rules normally take into account information like height,

width and position of adjacent connected components, plus the distance between them.

Examples of the effort required to group broken parts of numerals can be found in [SHI

et al., 1997] and [HA et al., 1998].

Another difficult task for segmentation-based methods consists of segmenting

touching numerals. Many studies have addressed just this problem. In [KIMURA &

SHRIDHAR, 1992], upper and lower profiles plus a set of heuristics are used to

determine the segmentation points. A segmentation path is constructed upward from the

highest point on the lower profile of a numeral, or downward from the lowest point in

the upper profile. In another approach, a contour analysis of connected numerals is

performed [WESTALL & NARASIMHA, 1993]. Vertically-oriented edges are derived
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from adjacent strokes, and these are used as vertices of a graph. These vertices are

considered potential points of segmentation. Recently, in [YU & YAN, 1998], the

distribution of structural features is used to determine the touching region between two

numerals. Candidate touching points are selected from this region, using geometrical

information. The recognition of the left or right lateral numeral is used to correct the

position of the candidate touching point.

In general, these studies have revealed that segmenting touching characters

without the aid of a recognizer is often unreliable. In addition, the use of heuristics to

drive a blind search for digits in strings reduces the accuracy of the segmentation-based

methods.

The segmentation-free methods have demonstrated their advantages in dealing

with broken and touching numerals. An example is shown in [GADER et al., 1997],

where an over-segmentation strategy is used to segment the string into primitive

segments, which are classified as digits or parts of digits. Parts of digits must receive

low recognition rates. A clear drawback of this strategy is the time it takes to merge

primitive segments to form a string. Some studies have proposed the use of spatial

constraints to avoid exponential complexity, as in [NISHIDA & MORI, 1994] and [HA

et al., 1998]. However, these spatial constraints are again usually based on heuristics.

Additional problems can be caused by misclassification of digit parts as digits. In Figure

2-7(b), we can see this problem, which is solved by considering the string length as

known.

An alternative aimed at avoiding the over-segmentation problems has been the

use of an implicit segmentation strategy to integrate segmentation and recognition.

However, the cost to integrate segmentation into the recognition process is some loss of

recognition performance. The work described in [PROCTER & ELMS, 1998]

represents an example of this approach. The authors have adapted an HMM-based

system, originally created to recognize printed words, for handwritten numeral strings.

Unfortunately, the recognition results are not too good, because the proposed column

shape features are not appropriate for modeling handwritten text. Moreover, the

recognition performance of touching digits is not reported, and the overlapping between

adjacent digits, which may represent additional problems for their feature extraction

method, is not considered. Other examples of implicit segmentation-based methods are
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found in [MATAN et al., 1992] [MATIN et al., 1993], [KEELER & RUMELHART,

1992] and [LEE & KIM, 1999], in which neural networks have shown to constitute a

suitable framework for integrating the segmentation and recognition processes.

However, the problem with these methods is the size definition of the sliding window

used as input for the network, and the corresponding scan rate. Another common

weakness is that they generate too many candidates segments when an exhaustive scan

method is used.

In summary, we may conclude that an implicit segmentation-based method is a

promising way to deal with the string difficulties described in Chapter 1, since the prior

segmentation of strings into digits is avoided. Moreover, the method can be developed

without the use of heuristics, which usually reduce the accuracy of the method.

However, it is necessary to take into account some loss in terms of recognition

performance which may be brought about by integrating segmentation into the

recognition process.

2.4. Summary

In this chapter, we have presented the main topics related to the proposed

method: handwritten isolated numeral recognition, and handwritten numeral string

recognition. The main investigations that have permitted improvements to be made in

recognition performance of isolated handwritten numerals have been presented. Some

recent work has been briefly described in terms of features, types of classifiers, test

databases and results. Moreover, different approaches for recognizing numeral strings

have been presented and discussed. In the next chapter, the main concepts related to the

background theory necessary to describe the proposed method are presented.
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33..  BBaacckkggrroouunndd  TThheeoorryy

In this chapter, a brief introduction to the background theory relevant to the

method for handwritten numeral string recognition proposed in this thesis is presented.

The Hidden Markov Model (HMM), which is used in both SCB and Verification stages

of the proposed method, is described in Section 3.1, including the main HMM concepts,

types of HMMs and the algorithms required to implement this statistical technique for

modeling real problems. Some aspects of observation sequences (discrete, continuous

and semi-continuous) are discussed. Finally, we present a scheme to optimize the

number of states of an HMM. A vector quantization process, which is used for mapping

feature vectors calculated from a digit or string image onto discrete observations, is

described in Section 3.2, as is the K-means algorithm. Finally, in Section 3.3, a brief

review of Bayesian theory is provided. The theory is used in the proposed method to

implement a classifier to predict the string length (number of digits) from its bounding

box width (in columns). This length predictor is used to deal with strings of unknown

length in the last experiments of the proposed evaluation protocol.

3.1. Hidden Markov Model (HMM)

The original motivation for using HMMs for handwritten numeral string

recognition was based on their successful application to the recognition of spoken

strings in the field of Speech Recognition [RABINER, 1989]. As in handwritten

numeral strings, the number of words in spoken strings, and their boundaries, are

unknown. Moreover, a priori segmentation of spoken strings into words is often

unreliable because of sound coarticulation. In [RABINER & JUANG, 1993], a system

for recognizing spoken digit strings is described, and various algorithms for optimal

matching of single digit HMMs against an unknown spoken string are discussed. More

recently, in [BOSE & KUO, 1994] and [ELMS et al., 1998], the authors have shown the

benefits of applying HMMs to represent and recognize printed text in the field of off-

line recognition. This research has proved that HMM is particularly well suited to
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performing segmentation during recognition. In this direction, the proposed method uses

HMMs to implement an implicit segmentation to deal with the string difficulties

described in Chapter 1.

A detailed review of this kind of statistical modeling and its application to the

machine recognition of speech can be found in [RABINER, 1989]. In [PORITZ, 1988]

the basic idea is introduced by elementary examples, and the Baum-Welch algorithm for

maximum likelihood estimation of the model parameters is discussed from both an

intuitive and a formal point of view.

The Markov chain is a method for modeling a signal as a sequence of observable

outputs produced by some process called the source, or the Markov Source. In such a

source, the symbols currently produced are dependent only on a fixed number of

symbols which had been produced preceding the current output. The number of

preceding outputs taken into account for the next symbol to be produced defines the

order of a Markov Model. First- and second-order Markov Models have been used for

most applications, since the complexity of the model grows exponentially with the

order. This work focuses on first-order Markov Models.

The HMM has the same structure as a Markov chain, but the difference is that

each state of a Markov chain is a single observation symbol corresponding to an

observable physical event. In an HMM, each state is a probability over all symbols.

Thus, in a Markov chain, it is possible, given a sequence of symbols produced by a

model, to compute the sequence of states that produced it. However, in most real

problems, each state of a model cannot be defined as a single symbol, because more

than one symbol can be observed per state. In order to extend the Markov chain to deal

with these problems, the states in an HMM model are regarded as “hidden”, i.e. each

state is a probability distribution over all symbols. Thus, HMMs cannot provide the

exact sequence of states that produced a given sequence of symbols generated by a

model, but it is possible to compute the sequence of states with the highest probability

of having produced the sequence of symbols observed.

The following notation describes a complete parameter set of a first-order

discrete HMM:

),,,,,( πλ BATMN= (3.1)

where:
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N: number of distinct states in the model. The set of states can be written as:

{ },,...,, 21 sss NS = (3.2)

and qt denotes the state at time t;

M: number of distinct observation symbols per state (size of alphabet), which represent

the physical output of the model. The set of the individual symbols can be denoted

by:

{ }....,, 21 vvvV M= (3.3)

T: length of the observation sequence. The observation sequence can be denoted by:

{ },,....,, 21 ToooO = (3.4)

and ot denotes the observation at time t;

A: state transition probability distribution. { }ijaA = , where:

[ ],|1 itjtij sqsqPa === + ,,1 Nji ≤≤ (3.5)

i.e,  the probability of the state sj at time (t+1) given state si at time t. In order to obey

the standard stochastic constraints, the elements in A must present the following

properties:

,0≥aij ij,∀ (3.6)

,1
1

=∑
=

N

j
ija

i∀ . (3.7)

B: observation symbol probability distribution in state j. { })(kbB j= , where

[ ],|)( jtktj sqvoPkb === ,1 Mk ≤≤  Nj ≤≤1 . (3.8)

The probability of the symbol vk being observed at time t, given state sj at time t,

)(kbj  must have the following properties:

0)( ≥kb j (3.9)

1)(
1

=∑
=

M

k
j kb . (3.10)
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π: initial state distribution { }ππ i= , where:

[ ],1 sqP ii ==π Ni ≤≤1 , (3.11)

the probability that the initial state equals si. Similarly, this probability must be non-

negative and:

∑
=

=
N

i
i

1
1π . (3.12)

3.1.1. Types of HMMs

There are two important types of HMMs: ergodic and left-right or Bakis model

[RABINER, 1989]. The ergodic model is a specific case of a fully-connected model

when all ija  are positive. In this type of model, the states are interconnected in such a

way that any state can be reached from any other state. Figure 3-1(a) shows a 4-state

ergodic HMM model.

The left-right model presents an important kind of state interconnection for text

recognition modeling which has the property:

,0=ija ij < . (3.13)

This property means that no transitions are allowed to those states whose indices are

lower than the current state, which is of interest for modeling signals changing over

time. Figure 3-1(b) presents a 4-state left-right model. Since the state sequence must

begin in state 1 and must end in state N, the initial state probabilities have the following

property: 0=πi  when 1≠i , and 1=πi  when 1=i .

Often, with left-right models, additional constraints are used, such as:

,0=aij ∆+> ij , (3.14)

in order to avoid great changes in state indices. ∆  is a value used as a limit for jumps.

For example, in Figure 3-1(b), ∆  is 2; then, no jumps with more than 2 states are

allowed.
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Figure 3-1 Types of HMM; a) a 4-state ergodic HMM model; b) 4-state left right model

3.1.2. Discrete, continuous and semi-continuous observation densities

As mentioned previously, each HMM state has an observation symbol

probability distribution (parameter B), which describes the probability of the symbol vk

being observed in this state. In a discrete HMM model, the probability of observing a

symbol vk  while in state s j , denoted as ( )kb j , is defined from a distribution computed

over the set of all possible symbols in the system. This distribution is non-parametric

and quantified, i.e. it is not needed a priori knowledge about the distribution form to

model a signal, and each observation can take only one discrete value from a finite set.

Then, it is necessary only to have enough training data to model a signal. However, for

most applications, the observations are continuous signals. In these cases, a discrete

HMM can be used only after a quantization process of the signal in order to create a

codebook. The cost is that the quantization process usually presents a quantization

distortion, which may degrade performance significantly. Moreover, to add a new class

to the system, the reconstruction of the codebook is necessary, and consequently re-

training of all system models.

The use of continuous HMMs makes it possible to avoid quantization distortion

and retraining of the system, since there is no codebook.  However, there are some
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costs: a continuous probability density function must be defined a priori, and more

training data is required for an accurate HMM parameter estimation. A mixture density

function, weighted using the sum of a number of parametric distributions, has been used

to find the best way to reflect the distribution of observations.

∑=
=

M

m
jmjmj xbcxb

1
)()( .

(3.15)

Here jmc  is the weight for the m-th mixture in state s j , and M is the number of mixture

components.

Semi-continuous HMMs, or SCHMMs, can be used to avoid distortions caused

by quantization of continuous signals to model them with discrete HMMs, as well as to

reduce the amount of data and computational complexity to train continuous HMMs.

Also called tied mixtures, the idea is that similarities may exist in the data between

observations that do not represent the same source. This means that clustering the data

in an unsupervised way should create clusters with crossing class boundaries. We can

represent any state distribution as weighted combination of Gaussian prototypes known

as semi-continuous densities.

In SCHMMs, the vector quantization (VQ) codebook used to model continuous

signal with discrete HMMs is represented by a set of continuous probability density

functions, whose distributions are overlapped. In this codebook, each codeword can be

represented by a continuous probability density function.  Then, the VQ operation

produces values of continuous probability density functions ( )vxf j|  for all codewords

v j .

The semi-continuous output probability can be considered as a mixture

probability density function, with the K codewords in the codebook being mixed using

the B parameter of the HMM model as weighting coefficients, as below:

∑=
=

K

k
jkj kbvxfxb

1
)()|()( . (3.16)

The problem with this method is that it focuses on clustering similar observations, and

not observations which provide discriminating information.
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In [HUANG et al., 1993], an interesting comparative study of these types of

observation densities is carried out. Given the advantages and disadvantages of each

type of observation density, we decided to implement a discrete HMM to be sure that in

both stages of the proposed method, SCB and Verification, there will be enough data for

training. The problem is not to have enough samples of isolated digits in the NIST

database, but enough samples to model specific handwriting knowledge related to the

interaction between adjacent digits in strings. In addition, it is important to ensure

portability to the proposed method.

3.1.3. Training HMMs

There are different ways to train an HMM. A detailed description of the training

criteria can be found in [RABINER, 1989]. The most common criterion is called

Maximum Likelihood (ML). In this criterion, given a training database composed of

sequence of observations, the HMM parameters are first initialized and then iteratively

re-estimated such that the likelihood of the model produced by the training sequences

increases. The training process stops when the likelihood reaches a maximum value.

The ML estimators focus on maximizing the likelihood of an individual model

producing observations from the source that it is modeling, but it does not take into

account the likelihood of competing models producing these same observations. This

may produce suboptimal decision boundaries.

An alternative is to use the Maximum Mutual Information (MMI) criterion. In

this case, a set of models is trained to maximize the ability of each model to

discriminate between observation sequences generated by itself and those generated by

the other models. This criterion is used to distinguish the correct model from all the

other models on the training sequence. However, an analytical solution to this problem

is not feasible.

A third option is the Minimum Discrimination Information (MDI) criterion,

which is used when the signal to be modeled was not necessarily generated by a Markov

source. This criterion minimizes the cross-entropy between the set of valid signal

probability densities and the set of HMM probability densities. Unfortunately, obtaining

such a minimum is highly non-trivial.
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In this work, we use the Baum-Welch (BW) algorithm to train numeral models.

This algorithm is based on ML criterion. The first step consists of calculating ( )λ|OP ,

i.e., the probability of the observation sequence O, given the model λ.

The efficient solution to calculate ( )λ|OP  is called a forward procedure. Consider the

forward variable, )(itα , defined as:

( )λα |,,...,,)( 21 sqoooPi ittt == , (3.17)

which is the probability of the partial observation sequence o1, o2,… ot , and state si at

time t, given the model λ. The algorithm for inducting )(itα is described below:

Initialization:
),()( 11 obiii πα = Ni ≤≤1 , (3.18)

Induction:

),()()( 1
1

1 oba tj

N

i
ijtt ij +

=
+ 



= ∑ αα

,11 −≤≤ Tt
Nj ≤≤1 ,

(3.19)

Termination:

)()|(
1

iOP
N

i
T∑

=
= αλ . (3.20)

The objective of the BW algorithm is to adjust the model parameters ( )πλ ,, BA=  to

maximize )|( λOP . This is the most difficult problem in the HMM domain. The BW is

an iterative algorithm based on the forward (previously defined) and backward

probabilities. The backward variable )(itβ , similar to forward variable )(itα , is defined

as:

),|,...,,()( 21 λβ sqoooPi itTttt == ++ , (3.21)

which is the probability of the partial observation sequence from t+1 to the end, given

state si  at time t and the model λ. The algorithm for induction of )(itβ  is described

below:

Initialization:

,1)( =iTβ .1 Ni ≤≤ (3.22)
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Induction:

),()()(
1

11 jobai
N

j
ttjijt ∑=

=
++ ββ 1,...,2,1 −−= TTt

.1 Ni ≤≤
(3.23)

After defining the backward variable, it is possible to define the probability of being in

state si  at time t, and state s j  at time t+1, given the model and the observation

sequence, which is denoted by:

),|,(),( 1 λξ OsqsqPji jtit === + , (3.24)

and is calculated using:

)|(
)()()(

),( 11

λ
βαξ

OP
jobai

ji ttjijt
t

++= . (3.25)

Now, consider )(itγ  as the probability of being in state si  at time t, given the

observation sequence O, and the model λ.

),|()( λγ OsqPi itt == , (3.26)

which can be calculated using the forward and backward variables, as:

)|(
)()(

)(
λ

βαγ
OP

ii
i tt

t = . (3.27)

Given that, the expected number of transitions from si  is denoted by

∑
−

=

1

1
)(

T

t
t iγ , (3.28)

and the expected number of transitions from si  to s j  is denoted by

∑
−

=

1

1
),(

T

t
t jiξ .

(3.29)

Then using the formulas above, it is possible to have a method to re-estimate the

parameters π, A and B of an HMM, the set of formulas is constituted by:
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1) expected frequency in state si  at time t = 1

)(1 ii γπ = . (3.30)

2) transition coefficient = expected number of transitions from state si to sj, divided by

the expected number of transitions from state si.
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= −
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=
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ξ
. (3.31)

3) observation symbol probability = expected number of times in state j, while

observing symbol vk, divided by the expected number of times in state j.
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∑
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==
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(3.32)

3.1.4. Scoring HMMs

The scoring of HMMs in the proposed method is done by two algorithms –

Viterbi’s Algorithm [RABINER & JUANG, 1993] and the Level Building Algorithm

(LBA) [RABINER & JUANG, 1993][ELMS, 1996]. Viterbi’s algorithm is used to

implement the digit classifier used in the Verification stage. This algorithm is able to

match a single model to an observed sequence of symbols.  The LBA is used to

implement the segmentation-recognition module based on implicit segmentation

strategy in the String Context-Based stage. This algorithm is able to find the sequence

of numeral HMMs that best matches an unknown numeral string.

Viterbi’s algorithm

Viterbi’s algorithm is a dynamic programming method to estimate the sequence

of model states with highest probability of having produced the sequence of

observations, i.e., given the observation sequence { },,....,, 21 ToooO =  and the model λ,

this method finds a corresponding state sequence { },,....,, 21 TqqqQ =  which best explains
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the observations. It is used to match a single model to the observation sequence.

Consider the following variables:

• )(itδ : scores the likelihood of  the observation sequence o1, o2,… ,ot having been

produced by the most likely sequence of model states, which ends at state i at

time t;

• )(itψ : array used to trace the maximum likelihood path. It keeps a record of the

states which maximized the likelihood from time 1 to t.

Viterbi’s algorithm is described below:

Initialization:
),()( 11 obi iiπδ = Ni ≤≤1 (3.33)

.0)(1 =iψ (3.34)

Recursion:

( ) ( )[ ] ( ),max 1
1

obaij tjijt
Ni

t δδ −
≤≤

=
,2 Tt ≤≤

Nj ≤≤1
(3.35)

[ ],)(maxarg)( 1
1

aij ijt
Ni

t δψ −
≤≤

=
,2 Tt ≤≤
.1 Nj ≤≤

(3.36)

Termination:
[ ])(max

1

* iP T
Ni

δ
≤≤

= , (3.37)

[ ])(maxarg
1

* iq T
Ni

T δ
≤≤

= . (3.38)

Backtracking for state sequence:

),( *
11

* qq ttt ++= ψ .1,...,2,1 −−= TTt (3.39)

In the proposed method, Viterbi’s algorithm is used for isolated digit

classification in the Verification stage. The goal is to decide which numeral model an

observed sequence was produced by. For this purpose, the sequence of symbols is

presented to each model and its probability (P*) of being produced by that model is

evaluated. The model that has the greatest likelihood of producing this observation

sequence defines the numeral class.
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Level Building Algorithm

The Level Building Algorithm (LBA) [RABINER & JUANG, 1993][ELMS,

1996][PROCTER & ELMS, 1998] is used to find the sequence of numeral HMMs that

best matches an unknown numeral string.  Figure 3-2 shows a trellis structure that

describes the LBA.

Figure 3-2 Trellis structure for LBA

For describing this algorithm let us consider { }λλλλ m,...,, 21=  as a set of M  left-to-

right HMMs, each one composed of N states; { }ToooO ,....,, 21=  as an observation

sequence of length ;T  t as a time function ( Tt ≤≤1 ); and L  as the maximum number of

levels, which must be large enough to enable the correct model sequence to be

discovered. For example, 10 levels allow a total of 10 character models to be matched

against the input sequence.

At the first level )1( =l , each model λk  )1( Mk ≤≤  is matched against the

observation sequence from time 1=t .

Initialization:
)()1( 111 obλδ = (3.40)

0)(1 =iδ .2 Ni ≤≤ (3.41)

Recursion:

( ) ( )[ ] ( )obaij tjijt
Ni

t
λλδδ 1

1
max −

≤≤
= Tt ≤≤2

.1 Nj ≤≤
(3.42)
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Termination:
),(),,(* NtlP tδλ = Tt ≤≤2 (3.43)

.1),,(* −=λtlB (3.44)

A level reduction is performed at the end of the level. At this point the equations

3.45 and 3.46 are used to keep, respectively, the probability of the best match model and

the corresponding model label. Equation 3.47 represents a back-pointer to the previous

level.

[ ]),,(max),( *** λ
λ

tlPtlP = ; (3.45)

[ ]),,(maxarg),( * λ
λ

tlPtl =Ω ; (3.46)

( ) ( )[ ]




= λ

λ
,,maxarg,,, **** tlPtlBtlB

(3.47)

For higher levels )2( ≥l , since they pick up from the output of the previous level

model, the initialization procedure must be:

,0)1(1 =δ (3.48)

[ ] ),()1(),1,1(max)1( 1111
* obatlP ttt

λλδδ −−−= .2 Tt ≤≤ (3.49)

Moreover, a back-pointer array must be added to keep track of the time on the previous

level when the previous model match ended. This array must be initialized taking into

account the following condition:



 −

=
− )1(
1

)1(
1α

α
t

t
t ( )

.
)1(1,1 111

*

otherwise
atlPif tδλ

−>−−
(3.50)

During the Recursion procedure this back-pointer array is updated, as:

( ) ( )[ ]aij ijt
Ni

t
λδα 1

1
maxarg −
≤≤

= .
(3.51)

Finally, in the Termination procedure this back-pointer array is resumed in B* , as:

),(),,(* NtlB tαλ = .1 Tt ≤≤ (3.52)

After constructing all levels, ( )TLP ,**  represents the probability of the best

match of L models to the observation sequence. In order to find the best match, the B **
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array can be used in a backtracking process. The best match string is the maximum of

P **  over all levels.

During the construction of the proposed system, we fix parameter L since the

string length is considered as known. Being a strong system constraint, this allows a

fine tuning of important system parameters, such as the HMM topology in the LBA

framework. In the last experiments we relax this constraint.

Another option of Dynamic Programming (DP) algorithm to match individual

models against an unknown string is the Two-Level Dynamic Programming (Two-Level

DP) Algorithm [RABINER, 1989]. The two-level DP algorithm is divided into two

stages or levels: At the first level the algorithm matches individual models against an

unknown string, while the second level corresponds to the search for the optimal

concatenated string path. The main difference between the Level Building and the two-

level DP algorithms is that partial digit decisions are used to reduce the search range in

later stages of the LBA, while the two-level DP algorithm accumulates all the digit

scores until the end of the entire process and then decides the digit string in a separate

and independent second level DP calculation. Thus LBA involves significantly less

computation than the two-level DP algorithm.

3.1.5. Defining the HMM length

[WANG, 1994] describes a method to define the possible number of states (N)

of the HMMs taking into account durational statistics calculated from the training

database. First the mean length µ  and the variance σ2  of all observation sequences in

the training set are collected and they together define the possible N for each numeral

HMM:

( ) 121
1
1 2

2

2
+−+<<

+−
+−

σµ
σµ
σµµ N

(3.52)

Table 3-1 presents the range (minimum and maximum number of states) for each

numeral model calculated on the training set (50,000 isolated digits – 5,000 per class).

In addition, the mean length value is also calculated.
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Table 3.1 Minimum, maximum and mean number of states by digit class
Column based

models
Row based

 models
Numeral model Min Mean Max Min Mean Max

0 13 18 24 14 21 28
1 5 6 7 16 24 32
2 14 22 30 16 24 32
3 14 20 26 20 28 36
4 15 22 28 18 28 39
5 13 21 29 19 27 35
6 15 20 25 18 27 36
7 15 20 25 18 27 36
8 14 17 24 20 29 38
9 16 20 25 21 31 41

3.2. Vector quantization process

To use the HMMs described in the previous sections, we need to represent a

string or digit image as a sequence of discrete observations. To this end, in the feature

extraction of the proposed method each real-valued, continuous-amplitude feature

vector needs to be quantized to one of a number of discrete symbols available in a

previously computed codebook. To create this codebook, it is necessary to apply the

concept of Vector Quantization (VQ) [LINDE et al., 1980] [MAKHOUL et al., 1985].

Let us assume that ],...,,[ 21 xxxx N=  is an N-dimensional vector whose

components { }Nkxk ≤≤1,  are real-valued, continuous-amplitude random variables. In

vector quantization, the vector x  is mapped onto another real-valued, discrete-

amplitude, N dimensional vector y . It is used to say that x  is quantized as y , and y  is

the quantized value of x . This can be denoted by:

( )xqy = (3.53)

where ( )q  is the quantization operator and y  is the output vector corresponding to x .

The value of y  is a finite set of values }1,{ Liyi ≤≤ , where ]...,[ 21 yyyy iNiii = . L is

the codebook size (or number of levels), and }{yY i=  is the set of code vectors. To

design the codebook, we partition the N-dimensional space of the random vector x  into

L regions or cells and associate with each cell C i  a vector yi . The quantizer then

assigns the code vector yi  if x  is in C i .
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( ) Cy ii xifxq ∈= , (3.54)

The mapping of x  onto y  results in a quantization error, and a distortion measure

( )yxd ,  can be defined between them, also known as dissimilarity. The most common

distortion measure is the mean-square error, given by:

( ) ( )∑ −=
=

N

k
yx

N
yxd kk

1

21
,

(3.55)

Quantization is optimal when distortion is minimized over all L-levels quantizers. There

are two necessary conditions for optimality. The first condition is that the optimal

quantizer is realized by using a minimum-distortion or nearest neighbor selection rule.

( ) ( ) ( ) Ljijyxdyxdiffyxq jii ≤≤≠≤= 1,,,,, (3.56)

This means that the quantizer selects the code vector that results in the minimum

distortion with respect to x . The second necessary condition for optimality is that each

code vector yi  is chosen to minimize the average distortion in cell Ci . Let us consider

( ){ }Mnnx ≤≤1, as a set of training vectors, and M i  as a subset of those vectors in cell Ci .

The average distortion Di  is then given by:

( )∑=
∈Cix

i
i

i yxd
M

D ,
1 (3.57)

The vector that minimizes the average distortion in cell Ci  is called the centroid of Ci ,

and it is denoted as:

( )Ccenty ii = (3.58)

One well-known method for codebook design is an iterative clustering algorithm known

in the pattern recognition literature as the K-means algorithm [MAKHOUL et al.,

1985], where LK = (codebook size). The algorithm divides the set of training vectors

( ){ }nx  into L clusters C i  in such a way that the two necessary conditions for optimality
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are satisfied. In the algorithm description, m is the iteration index and ( )mCi  is the ith

cluster at iteration m , with ( )myi  its centroid. The algorithm is as follows:

K-means algorithm

Inicialization Step: Set 0=m . Choose a set of initial code vectors

( ) Liyi ≤≤1,0 .

Classification Step: Classify the set of training vectors ( ){ }Mnnx ≤≤1, into the

clusters  C i  by the nearest neighbor rule.

( ) ( ) ( ) Ljijallyxdyxdiffmcx jii ≤≤≠≤∈ 1,,,,,

Code Vector Updating

Step

1+= mm . Update the code vector of each cluster by

computing the centroid of the corresponding training

vectors in each cluster

( ) ( )( ) LimCcentmy ii ≤≤= 1, .

Termination Test Step if the decrease in the overall distortion ( )mD  at iteration

m  relative to ( )1−mD  is below a certain threshold, stop;

otherwise go to the Classification Step.

3.3. The Bayesian decision theory

Let us consider the problem of string length prediction, where it is necessary to

decide the length (number of digits) of a numeral string in one of the M  classes

available in the set { }wwww M...,,, 21= . In this set, class w2  represents strings

composed of 2 digits. Available information is the a priori probability of each class. For

instance, the a priori probability of the class w j  may be computed by counting the total

number, N , of all observations and the number of observations N j  which belongs to

the class w j . Then ( )wP j  can be defined as the relative frequency:

( )
N
N

wP j
j = . (3.59)
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A decision can be made based only on the a priori probability by selecting the class w j

with the highest ( )wP j . However, this decision is obviously unreasonable because every

string must be predicted to be one of the M classes of string lengths. A more precise

decision is possible by considering further observations, such as the width of the string

bounding box. Let x  be a continuous random variable whose value is the width (in

pixels) of the string bounding box, and ( )wxf |  be a class-conditional probability

function pdf. Given the a priori probability ( )wP j  and the pdf ( )w jxf | , we can

compute the conditional probability ( )xwP j |  using the Bayes rule:

( ) ( ) ( )
( )xf

wPwxf
xwP jj

j
|

| =
(3.60)

where

( ) ( ) ( )∑=
=

M

j
jj wwxfxf

1
Pr| .

(3.61)

Equation 3.61 is called the a posteriori probability as it is the probability of class w j

occurring after observing bounding box width x . Bayes rule shows how the observed

data x  changes the decision based on the a priori probability ( )wP j  using the a

posteriori probability ( )xwP j | . Decision making based on the a posteriori probability

is more reliable, because it employs both a priori knowledge and present observed data.

When large amounts of sample data are available, the probabilistic structure of

the pdf can be directly estimated from the training data. However, available sample data

are normally limited in practice. Thus, the pdf is usually assumed to have certain

probabilistic structure. The Gaussian pdf is one of the most used pdfs. The univariate

Gaussian pdf of the variable x  for the class w j  is given by:

( ) ( )










 −
−=

σ
µ

σπ 2

2

2 2
exp

2

1
|

jj
j

jx
wxf . (3.62)

where
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∑=
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(3.64)

and N j  is the number of observations which belongs to class w j .

As described in [HUANG et al., 1990], there are different decision rules based on a

posteriori probability. The most common are the Bayes and the minimum-error-rate

rules.

3.3.1.  Bayes decision rule

Let us consider the following loss function:

( ) Mji
ji
ji

wwh ji ,....,1,
1
0

| =




≠
=

= (3.65)

where M is the number of classes. This function is used to associate a unit loss to any

error where ji ≠ , while no loss is assigned to a right decision ji = . Using this scheme,

we can compute the conditional risk associated with making decision wi when the true

class is w j , as:

( ) ( ) ( )xhxR wwww j

M

j
jii |Pr||

1
∑
=

= (3.66)

The objective of the Bayes rule is to minimize the overall risk involved in making a

decision. For this purpose, we must to compute the risk in Equation 3.66 for each

decision and select the one for which the conditional risk is minimum.

3.3.2. Minimum-error-rate decision rule

The risk corresponding to the loss function described in Equation 2.65 equals the

average error probability. Another approach to make a decision is based on the

minimum-error-rate decision rule, which can be used to minimize the average
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probability of error. We can achieve the minimum error rate by selecting the decision

that class wi  is correct, if the a posteriori probability ( )xwP i |  is a maximum.

3.4. Summary

In this chapter we have described the Hidden Markov Models, which have been

successfully used to join segmentation and recognition in the field of speech

recognition. This chapter has presented different types of HMMs taking into account the

topology: ergodic and left-right models; and the observation probability distribution for

each state: discrete, continuous and semi-continuous. The main algorithms used for

training and scoring discrete first-order HMMs are presented. The Level Building

Algorithm was described, since this dynamic programming technique is used to match

single numeral models against an unknown numeral string in the implicit segmentation

process of the SCB stage.

A quantization process based on the K-means algorithm was described. It is used

to produce discrete observations from the feature space in both stages of the proposed

method. It is necessary because the use of discrete HMMs. Finally, a brief description of

Bayes theory was presented. In the proposed method, this theory is used to implement a

classifier to predict the string length (number of digits) from the bounding box width (in

columns) in order to deal with unknown length strings.
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44..  PPrreepprroocceessssiinngg  ooff  NNuummeerraall  SSttrriinnggss

In this chapter, we present the preprocessing techniques used to transfer a

handwritten numeral string to a more appropriate form. The general objective is to

reduce script variability, with specific objectives dependent on the proposed recognition

method.

Section 4.1 focuses on the use of slant normalization in an implicit

segmentation-based method for numeral string recognition. Different word slant

normalization methods are presented and discussed. A word slant normalization method

is selected and modified in order to improve the results for handwritten numeral strings.

We assume that each connected component (CC) in the string has its own slant. The

slant and contour length of each CC are used for obtaining the mean slant of the string.

Both the original and modified methods are evaluated by means of some interesting

analyses on the NIST SD19 database. These analyses show: a) the positive impact of

slant correction on the number of overlapping numerals in strings; and b) the difference

between normalizing isolated numerals based on the slant estimated from their own

images and doing so based on the slant estimated from their original string images.

Section 4.2 describes a size normalization method which also takes into account

an implicit segmentation-based strategy for recognizing numeral strings. This method is

based on non-linear normalization in order to deal with inter- and intra-string size

variations.

Finally, in Section 4.3, the method proposed in [SUEN et al., 1992] for

smoothing binary images is described. This method is used to smooth the string contour

in order to reduce the presence of spikes and notches caused by scanning noise or by the

slant normalization method.

The analyses performed in this chapter also support the idea of using contextual

information regarding string slant and intra-size variation to train the numeral HMMs of

the SCB recognition stage.
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4.1. Slant variation

The character inclination typically found in cursive script can be considered

useless, notwithstanding the fact that it is writer’s characteristic. Thus, it is common to

encounter slant normalization in the preprocessing stage in writer-independent methods

for word or string recognition. The general objective is to reduce script variability, with

specific objectives dependent on the recognition approach. For example, in explicit

segmentation-based methods, slant correction may be used to improve the results of

segmentation techniques based on vertical single-run zones to define character

candidates. In these methods, slant correction allows us to increase the detectability of a

candidate to constitute a character. Another example is to be found in implicit

segmentation-based methods, in which a vertical strip is used to scan the word image

for feature extraction. Here, slant is corrected in order to minimize the problem of

overlapping between adjacent characters, which interferes with the features computed

from them.

Figure 4-1 Slant normalization and a hypothetical implicit segmentation-based system

This work focuses on the use of slant normalization in an implicit segmentation-

based method for numeral string recognition. Let us consider the system in Figure 4-

1(b). In this example, the numeral strings are slant-normalized in order to reduce the

overlap between adjacent numerals. To this end, a slope (θ2 ) is estimated from the

whole numeral string image. String recognition is achieved by matching numeral

HMMs against the normalized string by means of dynamic programming. The

Slant normalization

Training

Numeral model construction Implicit Segmentation-based
Recognition

Recognition

Slant normalization

(b)(a)

Numeral
strings

Isolated
numerals

Numeral
models

θ1 θ2
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construction of these models is presented in Figure 4-1(a). They are trained on isolated

numerals, which are also slant-normalized. However, a different slope (θ1 ) is used,

which is estimated from the numeral image. Although the same slant normalization

method may be used to estimate θ1  and θ2 , they may present a significant difference.

At this point, we can formulate the following questions:

1. What is the real impact of slant normalization on the number of overlapping

numerals in the strings?

2. How different are θ1  and θ2 ?

3. If the difference between θ1  and θ2  is really significant, what is the real

contribution to string recognition of considering some contextual information

during slant normalization, i.e. correcting the slant of the training samples

using the slope estimated from their original strings (θ2 )?

To answer these questions, we first adapted a word slant normalization method to

normalize numeral strings. Then, we performed some interesting analyses using

naturally segmented numeral strings and corresponding digits extracted from the NIST

SD19 database. These analyses were also used to compare the original and the modified

slant normalization algorithms. The real contribution to string recognition of

considering contextual information on the slant normalization of numerals used for

training the HMMs, and also for dealing with intra-string size variation, are shown in

the experiments reported in Chapter 6.

4.1.1. Slant normalization

The most important step in slant normalization concerns estimation. Since the

characters in a word can present a non-uniform inclination, the methods for estimating

slant are based on the mean inclination of these characters. Thus, only a mean correction

of slant is possible. The objective of this correction is to transform the script image (a

cursive word, for instance) by translating its points in the x dimension taking into

account the estimated slope associated with the slant.

The slant correction methods described in this work were selected with a view to

the possibility of using them on handwritten numeral strings. They represent different

approaches to slant estimation; and the majority are strongly based on heuristics.
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4.1.1.1. Brown & Ganapathy method

In [BROWN & GANAPATHY, 1983], slant estimation is obtained by placing

two horizontal thresholds through the center of the word (see Figure 4-2). After the

crossover points have been determined (points where the script crosses the thresholds),

the associated slope is calculated from the crossover coordinates. The average of these

slopes is used as the script slant. Slant correction is a linear transformation described by

a 3x3 matrix, where only the x dimension is transformed.

Figure 4-2 Cross pointers defined in two horizontal thresholds adapted from [BROWN &
GANAPATHY, 1983]

4.1.1.2. Bozinovic & Srihari method

 Bozinovic and Srihari proposed in [BOZINOVIC & SRIHARI, 1989] a method

in which the first step consists of removing all horizontal lines which contain at least

one run of length greater than a parameter maxrun (see Figure 4-3(b)). In addition, all

horizontal strips lower than a parameter stripheight are removed (see Figure 4-3(c)).

The second step consists of dividing the horizontal strips by vertical lines into isolated

windows (see Figure 4-3(d)). For each window, the centers of gravity for its upper and

lower halves are computed and connected (except windows with an empty half).

Finally, the slope of the connecting line defines the slope of the window, and the

average for all windows defines the slope β  of the word.

Slant is corrected by applying the following transformation to each point with

coordinates x, y in the original image:
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),tan(' β (4.1)

(4.2)

where, def is used to specify the normal slant (90o ). An example of a slant-corrected

word using the Bozinovic & Srihari method is shown in Figure 4-3(e).

Figure 4-3 Bozinovic & Srihari Method  a) word image; b) horizontal lines removed; c)
small horizontal strips removed; d) strips divided by vertical lines into windows and slant
angles of each window;  e) slant-corrected image [BOZINOVIC & SRIHARI, 1989]
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Figure 4-4 Kimura, Shridhar & Chen Method a) word image; b) chain code image without
horizontal segments; c) slant-corrected image; d) a chain segment [KIMURA &
SHRIDHAR, 1992]

4.1.1.3. Kimura, Shridhar & Chen (KSC) method

Kimura, Shridhar and Chen use the chain code of the word contour for slant

estimation in [KIMURA et al., 1993]. Figures 4-4(a), 4.4(b) and 4.4(c) illustrate this

method. The horizontal chain elements (code n0) are not considered, and the other

elements are divided into slant chain segments: n1, n2 and n3, 45o, 90o and 135o
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respectively (see sample of a chain segment in Figure 4-4(d)). The average orientation

of these segments is given by:








−
++= −

31

3211tan
nn

nnnθ (4.3)

4.1.1.4. Simoncini & Kovacs method

Simoncini and Kovacs method [SIMONCINI & KOVACS, 1995] for defining

word slant is similar. Slant is estimated by means of the following expression:








++
+−= −

321

2311tan
nnn

Knnnθ (4.4)

where, again, n1, n2 and n3 are the numbers of contour segments of 45o, 90o and 135o

respectively. [ ]1,0∈Κ  is an adjustment factor.

4.1.1.5. Yacoubi method

An interesting approach is proposed in [YACOUBI, 1996]. The author defines a

number of lines with different inclinations (slope pi) and the same origin, and which are

regularly spaced from -45o to 45o, using multiples of an elementary angle ( 80π= ).

Subsequently, a projection histogram Hi is calculated for each line. The Hi histogram is

used to calculate a second histogram Gi, containing the number of segments in Hi for

each possible length k. The surface Si of each histogram Gi is calculated (or, the sum of

the segments weighted by their respective lengths). Only segments of length greater

than s are used (s = 3/5 x length of the word body). The mean slope is calculated as

follows:

θ = ∑ c pi i
i

(4.5)

where:

c
S

S
i

i

j
j

= ∑
(4.6)

Figure 4-5 illustrates this slant correction method.
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Figure 4-5 Yacoubi method; a) Projection histograms using inclination angle of 30o and 0o,
respectively; b) word after slant correction.

4.1.2. Bozinovic & Srihari method vs Kimura, Shridhar & Chen method

The word image in [BROWN & GANAPATHY, 1983], [BOZINOVIC &

SRIHARI, 1989] and [YACOUBI, 1996], as well as the chain code of the word contour

in [KIMURA et al., 1993] and [SIMONCINI & KOVACS, 1995] have been used for

slant estimation. Except for the KSC method, the majority of the methods described are

strongly based on heuristics. Unfortunately, these empirical values have a direct

influence on the estimation of the mean character inclination.

In order to evaluate slant correction methods for cursive words using numeral

strings, two methods were chosen from among these methods. They were implemented

and tested on handwritten numeral strings:

1. The Bozinovic & Srihari method, since it has been referenced many times in the

literature. Recently this method was used in a numerical string recognition method

in [NISHIWAKI & YAMADA, 1998].

2. The KSC method, since it does not use heuristics.

Slant-corrected handwritten numeral strings using both methods are shown in

Figure 4-6. In [BOZINOVIC & SRIHARI, 1989], slant estimation is highly dependent

on the parameter maxrun. During the tests and after several attempts, the maxrun and
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stripheight parameters were fixed, at 15 and 8 respectively. However, these values were

not suitable for all the string images (see Figures 4.6(b), 4.6(e), 4.6(f), and 4.6(j)). In

fact, maxrun is dependent on the stroke width (thickness) of the string and must

therefore be estimated for each string image in a particular way. An alternative is to

define maxrun using a distance function to calculate the mean thickness of the string.

However, this alternative probably represents problem in terms of time consumption.

There is only one disadvantage to the KSC method, which is that the image

contour must be defined. However, no heuristic is used and the method yields good

results (also in Figure 4-6).

Original Image Bozinovic & Srihari method Kimura, Shridhar & Chen
method

A

B

C

D

E

F

G

H

I

J

K

Figure 4-6 Slant correction of different length numeric strings using the Bozinovic &
Srihari and Kimura, Shridhar & Chen methods
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4.1.3. Proposal for a Modified Kimura, Shridhar & Chen (MKSC) method

This section describes an adaptation of the KSC method designed to improve its

results for handwritten numeral strings. The cited method was originally proposed for

the slant correction of cursive words. Thus, the slant is estimated from the whole word

in a global way which is not satisfactory for numeric strings since these can be

considered as a set of components (digits or fragments).

In fact, each string component can be considered a word with its own slant. In

contrast, an independent correction of each component is not viable, as this may

produce distortions in the numeral string because of the presence of broken digits.

One alternative is to estimate the mean slant based on the average of the slant of

each string component. However, a simple arithmetic average can lead to serious

problems. Again, the reason is the possibility of broken digits in the string. For

example, the horizontal bar of a broken digit five can have a strong influence on the

final string slant. This can be avoided by using a weighted average, where the slant

estimation is based on the average of the slant of each string component weighted by its

respective length (contour length).

Let N be the number of components (digits or parts of digits) in a numeric string;

the mean slant can be estimated by the following expression:

∑

×∑ −
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where def is the normal slant (90o),
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and iw  is the chain code length of the ith connected component.

Here, the slant of each string component is used to calculate the mean slant. The

contribution of each component to the calculated average is weighted by its respective

size (contour length). The objective is to avoid the distortions that can be generated by

small fragments.
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Table 4.1 Two comparisons between KSC and MKSC methods

Slant estimated for each component Slant estimated for each component
9 -45o 8 -26.6o

6 -45o 7 -45 o

0 -26.6o - -
9 -26.6o - -
4 -45o - -
1 -45o - -

Slant results Slant results
KSC method MKSC method KSC method MKSC method

Slant estimated: -45o Slant estimated: -39o Slant estimated: -26.6o Slant estimated: -35.8o

Example 1 Example 2

The examples in Table 4-1 show a comparison between the original KSC

method and the modified method proposed. In both Example 1 and Example 2, the slant

obtained from the adapted method (-39o and -35.8o respectively) is better than that

obtained from the original method (-45o and -26.6o respectively), since these slants lie at

a more uniform distance from the slant of each string component. Even visually, it is

possible to verify a noticeable improvement. Figure 4-7 shows numeral strings of

different lengths slant-corrected using both methods.
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Original Image Original
Kimura, Shridhar & Chen
method

Modified
Kimura, Shridhar & Chen
method

Figure 4-7 Numeric strings of different lengths slant-corrected using the original
KSC and the MKSC methods
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4.1.4. Preliminary analyses on the NIST SD19 database

Two interesting analyses using a data set extracted from NIST SD19 database

are performed. In the first, we evaluate the difference between using and not using

contextual information during slant correction of isolated numerals extracted from the

strings. The second analysis consists of evaluating the impact of slant correction on the

number of overlapping numerals in the strings.

An appendix in this work describes the process used to extract 44,256 naturally

segmented strings, and 197,784 isolated numerals from the NIST database which are

used in these analyses. A handwritten numeral string is considered “naturally

segmented” when its components are recognized as isolated digits. Moreover, the

recognition result of this string, from its digits, must correspond to that labeled by

NIST. In this data set the original string of each isolated digit is known.

4.1.5. Impact of slant normalization on the number of overlapping numerals

One objective of this analysis is to estimate the impact of correcting string slant

on the number of overlaps between adjacent numerals. Both the KSC and MKSC

methods are used in this analysis.

w1

w2
w3

Ow

Figure 4-8 Overlap estimation

The overlap between adjacent numerals is estimated from the overlap between

adjacent bounding boxes. For example, given the overlapping numerals in Figure 4-8,

the algorithm calculates the overlapping percentage (Opi ) as:

100×=
w
OOp

i

w
i (4.9)
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In this example, the overlap (Ow ) represents 47.6% of the width of the first bounding

box (numeral 5), and 65.2% of the width of the second one (numeral 0). Figure 4-9

shows the impact of slant correction on the number of overlapping numerals in the

44,256 numeral strings analyzed. Before correcting the string slant, there were 9,425

numeral strings with overlapping numerals, which represent 21.29% of all the strings

analyzed. After correcting the string slant using the KSC method, the number of strings

with overlapping numerals was reduced to 4,767, which represents 10.77% of all strings

analyzed.

9425

4767

3691

0

2000

4000

6000

8000

10000

Before slant correction

After slant correction using KSC

After slant correction using MKSC

Figure 4-9. Number of overlapping numerals before and after slant correction using the
KSC and MKSC methods

The number of overlapping numerals was reduced by 49.42%. On the other

hand, using the MKSC method, the reduction is more significant. After string slant

correction using this method, the number of strings with overlapping numerals was

reduced to 3,691, which represents 8.34% of all the strings analyzed. The number of

overlapping numerals was thus reduced by 60.83%.

4.1.6. Slant normalization with and without contextual information

The KSC and MKSC methods are also used to show the difference between two

techniques for correcting the slant of isolated numerals extracted from strings: a) slant

correction with contextual information, where the slant is estimated from the original

string; and b) slant correction without contextual information, where the slant is

estimated from each isolated numeral in particular, without taking into account its

origin. The objective of this analysis is to evaluate the difference between these

techniques in terms of the estimated slope. The isolated numerals extracted from the

naturally segmented strings are used in this analysis (197,784 samples), since they have
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a link to their original strings. For each numeral image, θ∆  is calculated, as

21 θθθ −=∆ , where θ1  is the slant of a numeral, estimated from its image; θ2  is the

slant of a numeral, estimated from its original string image.

In addition, we have calculated the mean θ∆  and the dispersion for each

numeral class. The results are shown in Table 4-2 for both slant correction methods. We

can see that the algorithms for slant correction show similar results. However, the

MKSC method provides a smaller dispersion than that obtained using the KSC method

for all the numeral classes.

Table 4.2 ?∆ mean and dispersion using the KSC and MKSC methods

Class KSC
method

MKSC
method

Class KC method MKSC method

µ θ∆ ϑ θ∆ µ θ∆ ϑ θ∆ µ θ∆ ϑ θ∆ µ θ∆ ϑ θ∆

0 4.76 4.82 5.05 4.20 5 6.85 5.75 6.51 5.18
1 6.30 6.89 6.94 6.35 6 5.45 5.89 5.93 4.90
2 6.08 5.51 5.95 4.76 7 7.11 7.11 7.40 6.10
3 6.40 5.51 6.15 4.94 8 4.73 4.55 4.92 3.98
4 4.74 5.79 5.18 4.74 9 4.23 5.05 4.70 4.12

Global 5.66 5.83 5.88 5.07

Using the MKSC method, the mean variation becomes 5.88o with a dispersion of

5.07o, with the largest mean variation occurring in numeral class seven (7.40o). Figure

4-10 shows that there is a significant number of cases where θ∆  is greater than 10.95o

( µ θ∆ +ϑ θ∆ ). This number represents 11.74% of all the analyzed images (23,223

numeral images) using the MKSC method, and 15.23% of all the analyzed images

(30,313 numeral images) using the KSC method. We can see that the modified method

shows better results, since the slant estimated from the string is closer to that estimated

from each isolated numeral. However, even using the MKSC method, the difference is

still significant. In Table 4-3, we can see an example, where ϑµθ θθ ×+>∆ ∆∆ 2 )( is based

on the use of the MKSC method.
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Figure 4-10  Cumulative distribution of θ∆

Table 4.3 Example of a numeral string with significant θ∆  (17.2o and 21.6o)
Orig. Image Slant-corrected

Image(MKSC)
θ2

-35.6o

Orig. Image Slant-corrected
 Image

θ1 θ∆

-18.4o 17.2o

-44.9o 9.3o

-44.9o 9.3o

-44.9o 9.3o

-44.9o 9.3o

-14.0o 21.6o

4.2. Size variation

Size variation may occur among different strings (inter-string size variation) or

among the digits in the same string (intra-string size variation). Intra-string size

variation (Intra-SSV), shown in Figure 4-11, generates blank spaces above and below

some digits in the string. Intra-SSV is a real problem for methods based on implicit

segmentation. Unlike explicit segmentation-based methods, no connected component

detection is performed prior to the recognition process. This means that the feature

extraction method must process the entire string image. So, we need to normalize the

whole string. The size normalization method must deal with both inter- and intra-size

variations.



70

Figure 4-11 Intra-string size variation: (a) distance from the top of the bounding box; (b)
distance from the base of the bounding box

A set of 197,784 isolated numerals is used to estimate height variation. The

numeral height is obtained as a by-product of the process used to extract these isolated

numerals from the naturally segmented strings in the training database (see Appendix).

Figure 4-12 presents the height variation, ranging from 18 to 79 pixels. The mean height

is 45 pixels. Figure 4-13 presents digit samples of different heights.

Figure 4-12 - Height variation

Figure 4-13 - Samples of height variation: a) height = 75 pixels; b) height = 18 pixels

After having observed this significant height variation on the numeral database,

the numeral height variation inside each naturally segmented numeral string is
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examined (44,256 samples). In order to perform this analysis, we first found the tallest

numeral in the string. The height of this numeral (hmax) is considered as the numeral

string height. Then, we calculated the difference between the height (hi) of the other

numerals in the same string and hmax,, as:

maxhhh i −=∆ . (4.10)

The mean h∆  ( µ h∆ ) is 9.06 pixels with a dispersion (ϑ h∆ ) of 5.67 pixels.

Even considering just those h∆  values greater than ( µ h∆ +ϑ h∆ ) as significant

variations, a considerable number of numeral strings is observed, a total of 13,249

numeral strings corresponding to 29.93% of the analyzed strings. Some examples of

numeral strings with h∆  > ( µ h∆ +ϑ h∆ ) are shown in Figure 4-14.

a)

hmax= 67 pixels
hi 67 47 26 49

h∆ - 20 41 18

b)

hmax= 65 pixels
hi 65 25

h∆ - 40

c)

hmax= 62 pixels
hi 62 32

h∆ - 30

Figure 4-14 Examples of numeral strings with h∆  >  ( µ h∆ +ϑ h∆ )

These studies of numeral height variation confirm the necessity of defining size-

invariant features or a non-linear size normalization method.
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4.2.1. Linear size normalization

Linear size normalization only depends on the size of the input image and that of

the normalized image. This linear transformation has the property of preserving

linearity, and its calculation is easy [LEE & PARK, 1994].

If we let JI ×  denote the size of the input image and NM ×  the size of the

normalized one, we can calculate the new position ),( nm  of the normalized image as

follows:

I
M

im ×=
(4.11)

J
N

jn ×=
(4.12)

where, Ii ,...,2,1= ; Jj ,...,2,1= and Mm ,...,2,1= ; .,...,2,1 Nn =

However, this kind of transformation is not sufficient to compensate for the size

variation among the digits inside the string (Intra-SSV). In this case, a non-linear size

normalization can be useful.

4.2.2. Non-linear size normalization

The method described is based on line density by crossing lines described in

[LEE & PARK, 1994]. Let ),( jiF H  and ),( jiF v  denote two characteristic features of

a pixel ),( ji  in an image of size JI × . If pixel ),( ji  is a point in the background area,

),( jiF H  and ),( jiF v , are given by reciprocals of neighboring stroke distances,

respectively, as shown in Figure 4-15.

( )jih
jiF H ,

1
),( = (4.13)

( )jiv
jiF v ,

1
),( = (4.14)

where, ),( jih and ),( jiv  denote the horizontal and vertical distances between

neighboring strokes respectively.

If pixel ),( ji  is a point in the pattern area, ),( jiF H  and ),( jiF v  are given by

very small values. Then, feature projection functions can be defined as follows:

( )∑ == J
j H jiiH F1 ,)( (4.15)
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( )∑ == I
i V jiiV F1 ,)( (4.16)

The coordinates ),( nm  of pixel ),( ji in the normalized image of size NM ×  are

defined by:

( )∑
=

=
i

k
kHAm

1
(4.17)
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l
lVBn
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where A and B are given by:

( )∑
=

=
i

k
kH

M
A

1

(4.19)

( )∑
=

=
j

l
lV

N
B

1

(4.20)

Figure 4-15 Characteristic features defined in [LEE & PARK, 1994]

4.2.3. Preliminary analysis of the size normalization method

In this preliminary analysis, the original string width and mean height of the

analyzed digits (45 pixels) are used to define the size of the normalized strings. We did

not change the string width in order that possible distortions on the digit strokes would
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be reduced. Figure 4-16 shows the distribution of the intra-size variation (Intra-SSV in

pixels) calculated as described in Section 4.2 for the 44,256 strings before and after

applying the non-linear size normalization method.
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Figure 4-16 Intra-SSV before and after applying the non-linear size normalization method

Prior to the application of the size normalization method, a mean intra-size

variation of 9.06 pixels and a deviation of 5.67 are observed. Following the application

of this process, the mean drops to 6.08 pixels and the deviation to 4.46 pixels. Figure 4-

17 shows the impact of the non-linear size normalization on mean intra-string size

variation by string class.

6.66
8.05

9.31
10.08

11.11
12.68

5.48 5.71 5.95 6.11 6.27 6.61

0

2

4

6

8

10

12

14

2_digits 3_digits 4_digits 5_digits 6_digits 10_digits

Before Size normalization After size normalization

Figure 4-17 The impact of the non-linear size normalization on the mean intra-string size
variation by string class.

4.3. Smoothing

The method proposed in [SUEN et al., 1992] is used to smooth the string

contour by reducing the presence of spikes and notches caused by scanning noise. This

method is based on a set of masks in a 3x3 window (see Figure 4-18). The central pixel



75

is filled when the window matches the patterns on mask (a), (b) or its equivalents with

90o, 180o and 270o rotations. The central pixel is deleted when the window matches the

pattern on the original masks, (c) or (d) or their equivalents, with 90o, 180o and 270o

rotations.

? 1 ? ? 1 ? 0 0 ? 0 0 0 0-background

1 0 1 1 0 1 0 1 1 0 1 1 1-foreground
(a) ? 1 ? (b) 0 0 1 (c) 0 0 1 (d) 0 0 ? ?- don’t care

Figure 4-18 Masks used in the smoothing process

4.4. Summary

From the first analysis on the NIST database, it was possible to observe that slant

normalization had brought about a significant reduction in the number of overlaps

between adjacent numerals in strings. The MKSC method achieved a more significant

reduction (60.83%) than that achieved by the KSC method (49.42%). This answers the

first question in Section 4.1, in that it indicates that slant normalization is really helpful

in reducing overlapping problems.

The second analysis has shown that there is a representative part of the analyzed

data, referring to those cases where θ∆  > ( µ θ∆ +ϑ θ∆ ), in which there is a significant

difference between the slants estimated with and without contextual information. In

other words, the slant estimated from the isolated digit (θ1 ) and that estimated from its

string (θ2 ) differ by more than 10.95o in 11.74% of 197,784 analyzed digits using the

MKSC method. This answers our second question, and at the same time justifies an

investigation of the real contribution to string recognition of incorporating this

contextual information in the slant normalization of the numeral training samples.

Moreover, we observe that by using MKSC we reduce the number of cases where θ∆

is greater than ( µ θ∆ +ϑ θ∆ ). This means that we can approximate the slant estimated

from the string to the slant estimated from its digits.

The answer to the last question related to the real contribution of these studies on

the recognition performance of handwritten numerals is reported in the experiments in

Chapter 6. These experiments show that the use of contextual information to provide the

same conditions during training and testing is a promising strategy in implicit

segmentation-based systems [BRITTO et al., 2000].
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The preliminary analysis on size variation has shown that the non-linear size

normalization method may reduce intra-string size variation. However, the experiments

described in Chapter 6 show that contextual information related to Intra-SSV during

training of the numeral models provides better recognition results.
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In this chapter, the proposed method for recognizing handwritten numeral strings,

which can be categorized as a segmentation-free approach, is described in detail. Prior

segmentation of strings into digits is avoided through the use of an implicit

segmentation strategy and a further verification step. Section 5.1 gives a general

overview of the method, which is composed of two HMM-based stages. Section 5.2

presents the first stage and its modules: Preprocessing, Foreground Feature Extraction

(FFE) and Segmentation-Recognition (SR). The features and numeral HMMs are

detailed. An evaluation of different HMM topologies in the LBA framework is

presented. The numeral models are adapted in order to enable a string-based training by

including an end-state in the HMM topology. These models show a better distribution

of the observations among their states. This has brought about an improvement in terms

of segmentation performance in the SCB stage. In this section as well, a space model

built inside the numeral models is defined. This model is used for incorporating string

contextual knowledge regarding inter-digit spaces into the numeral models of the SCB

stage.

Finally, the Verification stage is detailed in Section 5.3. In this stage, a new set of

features and numeral HMMs is used to improve the recognition performance of the

entire system, and the best hypotheses generated by the SCB stage are re-ranked for this

purpose.

5.1. Method overview

A general overview of the proposed method is presented in Figure 5-1. In the SCB

stage, a given numeral string is first preprocessed in order to correct the slant, smooth

the string contour and calculate the string bounding box. Subsequently, the FFE module

scans the string image from left to right, while a feature vector based on foreground

information is calculated for each column in the string bounding box. This vector is

mapped to a discrete symbol available in a previously constructed codebook. The output

of the FFE module is a sequence of discrete observations representing the entire



78

numeral string. The length of this sequence corresponds to the number of columns in the

string bounding box.

In the SR module, numeral models trained on isolated digits ( λλλ 910 ...,,, ccc ), but

considering string contextual information, are matched to the observation sequence

provided by the FFE module. The objective is to find the N best segmentation-

recognition paths or hypotheses using an implicit segmentation-based strategy. For each

segmentation-recognition hypothesis, the following information is provided: string

length (number of digits), segmentation points, recognition result of each string segment

and the global string recognition probability.

Figure 5-1 General overview of the proposed method

The segmentation-recognition hypotheses generated by the SCB stage are re-

ranked in the Verification Stage. Basically, this second stage consists of an HMM-based

digit classifier trained on isolated digits without taking into account any string

contextual information. A new set of features combines foreground and background

information to improve the recognition performance of the numeral HMMs. Moreover,

10 additional numeral HMMs ( λλλ 910 ...,,, vrvrvr ) based on the rows of the numeral images

are combined with the column-based models ( λλλ 910 ...,,, vcvcvc ) to ensure an accurate

representation of the digit classes.

The verification process starts in the Foregroung/Background Feature Extraction

(FBFE) module, in which the segmentation points provided by the first stage are used to

define string segments and calculate their bounding boxes. Then, for a given segment, a

feature vector combining foreground and background information is extracted for each

Verification

λλλ 910 ...,,, vrvrvr

Re-ranked
hypotheses

488 - 0.710,
489 - 0.201,
408 - 0.050,  … .

λλλ 910 ...,,, ccc λλλ 910 ...,,, vcvcvc

λλλ 910

Preprocessing

FFE SR FBFE

N  Best  SR
hypotheses

489 - 0.420,
488 - 0.301,
408 - 0.230,  … .

String Contextual-Based Stage

Verification Stage
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column of the segment bounding box. This vector is mapped to a discrete symbol in a

previously constructed codebook. A similar process is carried out for the rows of the

segment. The output of the FBFE module consists of two sequences of discrete

observations for each segment: column-based and row-based sequences. In the

Verification module, the first step is to select the column ( λλλ 910 ...,,, vcvcvc ) and row

( λλλ 910 ...,,, vrvrvr ) models corresponding to the segment to be verified. This is done by

using the recognition result of each string segment provided by the SCB stage. The

selected models are scored using the corresponding sequence of observations extracted

by the FBFE module. The output probabilities of both column and row models are

combined by summing their logs. The resulting probability corresponds to the

probability of the string segment being correct. A string probability is obtained by

summing the probability of each segment of the numeral string. This string probability

is added to the probability of the corresponding segmentation-recognition hypothesis

obtained from the SCB stage. The final resulting probability is used to re-rank the string

segmentation-recognition hypothesis.

5.2. String Context-Based (SCB) stage

As previously stated, the general objective of this stage is to provide the N best

segmentation-recognition paths or hypotheses for a given numeral string. To this end, it

is composed of three modules: Preprocessing, Foreground Feature Extraction (FFE) and

Segmentation-Recognition (SR). The main characteristic of this stage is the use of an

implicit segmentation based strategy to integrate the segmentation and recognition

processes. It has been shown that this is a promising strategy for dealing with the string

difficulties presented in Chapter 1, since this allows us to avoid a prior segmentation of

the string into digits without the aid of a recognizer. In addition, this stage contains

numeral HMMs trained on isolated digits, but considering contextual information (CI)

regarding slant and intra-string size variations. The main purpose of using such a CI is

to ensure an accurate representation of numeral strings.

5.2.1. Preprocessing module

In this module, string slant is corrected in order to reduce script variability. The

method proposed in Chapter 4 has also been shown to be really helpful in alleviating
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overlapping between adjacent digits which may interfere with the column-based

features extracted from them. The smoothing method described in [SUEN et al., 1992]

is used, before and after slant correction, to reduce possible artifacts on the string

contour. The last step of this module concerns the calculation of the string bounding

box.

A size normalization method was also evaluated in Chapter 6, and the non-linear

size normalization method described in Chapter 4 produced a significant reduction on

the intra-string size variation. However, the experimental recognition results have

shown that training the numeral models considering contextual information is more

appropriate for dealing with this string difficulty, since it avoids stroke distortions or

new touching cases caused by using a size normalization method.

5.2.2. Foreground Feature Extraction (FFE) module

In the implicit segmentation strategy of the SCB stage, a preprocessed string

image is scanned from left to right, while numeral HMMs are matched to it by means of

the LBA described in Chapter 3. Thus, it is necessary to compute a feature vector as a

function of an independent variable through the use of a windowing scheme.

These schemes are common in speech recognition, where the speech signal is

divided into a sequence of frames, and a feature vector is computed for each frame

[RABINER, 1989]. A narrow vertical strip has been used in a similar way in off-line

recognition systems. The image of a character, word or text to be recognized is scanned,

and, for each horizontal position, a feature vector is computed. Different schemes have

been proposed in the literature.

In [MAKHOUL et al., 1998], the authors propose a script-independent

methodology for optical character recognition. In this work, after skew and rotation

corrections, and character height normalization, a line of text is scanned by a narrow

vertical strip from left to right or right to left. The latter scan sense is used for Arabic

script. During the scan process, a feature vector is computed for each horizontal

position. The window, called a frame, is defined with a width of 1/15 of the text line

height. The overlap from one frame to the next is defined as 2/3 of the frame width.

Each frame is still divided into 20 vertically overlapping cells, and the following

features are computed:
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• intensity, i.e. the percentage of black pixels within each cell;

• vertical derivative of intensity across vertical cells;

• horizontal derivative of intensity across overlapping frames;

• local slope and correlation across a window two cells square.

Figure 5-2 shows a line of Arabic text and the frame divided into cells as used in

[MAKHOUL et al., 1998] for feature extraction.

Figure 5-2 Frame divided into cells, as proposed in [MAKHOUL et al., 1998]

In [GUILLEVIC & SUEN, 1997], the authors scan the word image using a

sliding window, and, for each position, a feature vector is extracted. The width of the

window is defined as a fixed fraction of the main body height (distance between upper

and lower base lines), and the overlap from one window to the next is fixed at 50% of

the width. Each window is subdivided into 5 horizontal regions, corresponding to the

ascender part of the word (j0), the upper main body (j1), the medium area (j2), the lower

part of the main area (j3), and the descender area (j4). Figure 5-3 shows the five regions

of interest defined.

Figure 5-3 Frame divided into five regions, as proposed in [GUILLEVIC & SUEN, 1997]
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The contour information of the word is used to extract the number of contour

points in the four directions given by the Freeman code: 0, 45, 90 and 135 degrees.

These 4 slope features are computed for each of the 5 regions, for a total of 20 features.

In addition to these slope features, a position feature is computed for the ascender and

descender regions as the average position of all contour points.

In another scheme, described in [ELMS, 1996], a vertical shape profile is

proposed in order to recognize polyfont printed characters, and in which features are

extracted from columns of pixels. Here, the width of the window is one pixel (a

column). A shift-invariant feature, called the shape feature, represents a pattern of bits

in the window, and a COG feature represents the relative center of the pixel mass with

respect to the previous windows. These shape features are quantized using a codebook,

which contains 32 possible bit patterns. A shift-invariant Hamming distance measure is

defined to perform the shape quantization.

Similar to [ELMS, 1996] in our windowing scheme is a feature vector calculated

for each column of the digit or string image. With this scheme, the problem of defining

the size of a frame or sliding window is avoided, as is the overlap from one frame to the

next, such as in [MAKHOUL et al., 1998] and [GUILLEVIC & SUEN, 1997]. We took

this decision considering the preliminary analyses on the NIST database presented in

Chapter 4, where it is possible to observe significant inter- and intra-string size

variations. In this case, to define a frame and divide it into cells, it is necessary to

consider a non-linear size normalization method to deal with both inter- and intra-size

variations. However, such a scheme may cause distortions in the digit strokes or broken

digits, or may even generate new touching cases. To compensate for not using such a

zoning scheme, the relative position of each feature from the top of the digit or string

bounding box is computed. The relative position in this case is size-invariant and

enables simulation of a zoning scheme.

The FFE module computes a feature vector composed of 34 foreground features.

This 34-feature vector is mapped to one of the 256 possible discrete symbols available

in the codebook previously constructed using the vector quantization process described

in Chapter 3. The output of the FFE module is a sequence of discrete symbols

representing a given numeral string. The length of the sequence corresponds to the

width (number of columns) of the string bounding box.
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Foreground features

This set of features is extracted from the foreground pixels of the string image.

Even knowing that background information may provide a strong recognition

performance, its use is avoided since the objective is to jointly maximize segmentation

and recognition performances of the implicit segmentation strategy proposed in the SCB

stage. To calculate the background features, we need to know a priori the boundaries of

each digit inside the string. However, this is one of the objectives of the SCB stage.

The proposed foreground feature set is composed of local and global features

extracted from each string column. The local features are based on transitions from

background to foreground pixels, and vice versa. For each transition, the mean direction

and corresponding variance are obtained by means of the statistical estimators defined

in [SABOURIN, 1990]. These estimators are more suitable for directional observations,

since they are based on a circular scale. For instance, given the directional observations

1o
1 =α  and 359o

2 =α , they provide a mean direction (α ) of 0o instead of the 180o

calculated by conventional estimators.

Figure 5-4 Circular mean direction α and variance Sα for  a distribution ( )α iF

Let ααα Ni ...,,...,,1  be a set of directional observations with distribution ( )α iF

and size N. Figure 5-4 shows that α i represents the angle between the unit vector OPi

and the horizontal axis, while Pi  is the intersection point between OPi  and the unit

circle. The cartesian coordinates of Pi  are defined as:

( ) ( )( )αα ii sin,cos (5.1)
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The circular mean direction α of the N directional observations on the unit

circle corresponds to the direction of the resulting vector ( )R obtained by the sum of the

unit vectors ( )....,,...,,1 OPOPOP Ni  The center of gravity  ( )SC ,  of the N coordinates

( )( ))sin(,cos αα ii  is defined as:

( )∑=
=

N

i
iN

C
1
cos1

α
(5.2)

( )∑=
=

N

i
iN

S
1
sin1

α (5.3)

These coordinates are used to estimate the mean size of R , as:

( )SCR 22 += (5.4)

Then, the circular mean direction can be obtained by solving one of the

following equations:

( )
R
C=αcos

(5.5)

( )
R
S=αsin

(5.6)

Finally, the circular variance of α is calculated as:

RS −= 1α                   10 ≤≤Sα
(5.7)

To estimate α  and Sα  for each transition of a numeral image, we have

considered }{ 315,270,225,180,135,90,45,0 00000000  as the set of directional

observations, while ( )α iF  is computed by counting the number of successive black

pixels over direction α i  from a transition up to an encounter with a white pixel. In

Figure 5-5, the transitions in a column of numeral 5 are numbered from 1 to 6, and the

possible directional observations from transitions 3 and 6 are shown. This directional

information is very important since it give us some insight into the local shape of the

digit stroke.

In addition to this directional information, we have calculated two other local

features: a) relative position of each transition with respect to the top of the digit
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bounding box; and b) whether the transition belongs to the outer or inner contour, which

shows the presence of loops in the numeral image. The first feature is used to

compensate for the lack of a zoning scheme in our feature extraction method. The

second is used to detect the presence of loops, which are very discriminative for

handwritten numerals. After checking several digit images, we defined a maximum of 8

transitions per column. Thus, the feature vector is composed of 32 features at this point.

The global features are based on the vertical projection (VP) of black pixels for

each column, and the derivative of VP between adjacent columns. These features

provide the foreground pixel density of each column and the difference between

adjacent columns that may give us some insight into the characteristic strokes of a digit.

This constitutes a total of 34 features extracted from each column image and normalized

between 0 and 1.

Figure 5-5 Transitions in a column image of numeral 5, and the directional observations
used to estimate the mean direction for transitions 3 and 6

5.2.3. Segmentation-Recognition (SR) module

This module integrates segmentation and recognition through the use of an

implicit segmentation-based strategy. It does so using the LBA described in Chapter 3,

which is responsible for matching numeral HMMs to the preprocessed string

represented as a sequence of discrete symbols provided by the FFE module.

To ensure an accurate representation of a numeral string, the numeral HMMs

( λλλ 910 ...,,, ccc ) are trained on a special data set extracted from the original NIST SD19.

To create this data set, an automatic process based on the digit classifier is described in

the appendix of this work and also in [BRITTO et al., 1999]. In this process, a
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handwritten numeral string is selected and segmented into digits when all its

components are recognized as isolated digits. Moreover, the string recognition result

must correspond to that labeled by NIST. The objective is to obtain a data set in which

the isolated digits have a link to their original strings. This enables the use of string

contextual information during training of numeral models on the isolated digits. The

general idea is to keep the same experimental conditions during system training and

testing.

Contextual information used during training concerns string slant and intra-

string size variations. The contribution to string recognition of the use of the slant

estimated from the original string to correct the isolated digits used for training an

implicit segmentation-based system is presented in Chapter 6 and also in [BRITTO et

al., 2000].

The intra-string size variation generates blank spaces on the top and on the

bottom of some digits in the string, as shown in Figure 5-6.

Figure 5-6 Intra-string size variation

To deal with this problem, we have considered these distances or blank spaces as

contextual information. For this purpose, features are extracted from each training

sample (isolated digit) by taking into account the height of its original string bounding

box instead of the height of its own bounding box. Moreover, to deal with inter-string

size variation, we use only size-invariant features in the FFE module.

The structure of the numeral HMMs in our baseline SCB stage was

experimentally defined. Some preliminary results were obtained using a left-right

discrete HMM with 5 states. This structure was optimized taking into account the

methodology defined in [WANG, 1994] and described in Chapter 3. The K-means

algorithm, also described in Chapter 3, is used to evaluate different codebook lengths.

The best results were achieved using a codebook with 256 entries. All experimental

results are shown in Chapter 6.
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5.2.4. Numeral models

The topology of the numeral models is defined taking into account the

recognition of handwritten text and the use of LBA. This means a left-right model

without initial or end-states. The number of states was experimentally defined.

Figure 5-7 shows the initial 5-state HMM topology used in the baseline SCB stage.

Figure 5-7 Left-to-right HMM model with 5 states

The same, or similar, topology can be found in related works. In [ELMS et al.,

1998], the authors use it to model character classes to recognize fax-printed words. The

same structure is used for modeling numeral classes to recognize handwritten numeral

strings in [PROCTER & ELMS, 1998]. Another similar HMM topology, with

additional skip transitions, is used for modeling airlines vocabulary in [RABINER &

JUANG, 1993]. In all the above, the LBA is used as a recognition algorithm.

As we can see, the HMM topology used in the baseline system does not present

additional states (initial or end-states) to enable the concatenation of numeral models,

since these are not necessary in the LBA framework. In the SR module, 10 numeral

models independently trained on isolated numerals are used to recognize strings, and the

LBA is responsible for finding the best sequence of these models for a given numeral

string. However, this kind of topology does not allow us to model the interaction

between adjacent numerals in strings. Moreover, in the preliminary experiments on

numeral strings in Chapter 6, we can observe a significant loss in terms of recognition

performance as the string length increases (see Figure 6-1). In order to better understand

the behavior of these numeral models, the distribution of observations among the HMM

states is computed during their training on 50,000 isolated numerals (5,000 samples per

class). Figure 5-8 presents these distributions as a 5-state HMM without end-state.
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Figure 5-8 Distributions of observations among the HMM states computed during model training

5-state HMM without end-state 5-state HMM with end-state
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These unbalanced distributions of observations among the states, associated with

the presence of a self-transition with probability value equal to 1.0 in the last HMM

state (s5), have a negative impact on the segmentation performance of the SR module.

To better explain, let us consider paths A and B in the LBA trellis in Figure 5-9, which

share the same pathway until time t=4. Path A reaches state 5 (s5) first (at time t=6).

Meanwhile, path B may not reach the final state, even though it is a promising path.

This may occur because the transition probability from state 4 to state 5 (a45) (a small

value because of the nature of the distributions observed) must compete with the self-

transition probability on state 5 (equal to 1.0, since there is no transition out of this

state). Under this condition, the numeral recognition at this level may succeed, although

without representing the best segmentation path. This non-optimum matching can bring

about problems for the next LBA levels. This explains why, in the baseline system, the

recognition of numeral strings drops drastically as their length increases (see Figure 6-1

in Chapter 6).

Figure 5-9 Paths A and B in an LBA level considering model λ1

To deal with this problem and also adapt the numeral models to a string-based

training, we include an end-state in the HMM topology (see Figure 5-10). The new

models show a better distribution of the observations among their states, as we can see

in Figure 5-8 (5-state HMM with end-state), and avoid a self-transition with probability

value equal to 1.0 in the state 5 (s5). The end-state does not absorb any observation, and

it is useful to concatenate the numeral models during a string-based training. The

positive impact of this modification on the HMM topology to the string recognition is

shown in Section 6.2.4 of the Chapter 6 and also in [BRITTO et al., 2001a].

     1         2         3          4         5         6         7           … ..     T (time)
1

2

3

4

5HMM
States

A
B



90

Figure 5-10  5-state HMM with an end-state

Based on this new topology, we can pay some attention to the possibility of

integrating handwriting-specific knowledge into the model structure to obtain an

accurate representation of numeral strings.

In addition, the final length of each numeral HMM (number of states) was

redefined through the use of the scheme described in Chapter 3. This scheme estimates

a range for the length of each numeral HMM. The final length of each model in Table 5-

1 is experimentally defined (see Chapter 6).

Table 5.1 Final length of each numeral HMM
Numeral model Number

of states
0 13
1 5
2 14
3 14
4 15
5 13
6 15
7 15
8 14
9 16

5.2.5. Space model

With objective of obtaining an accurate representation of numeral strings, we

investigate a way of integrating some contextual information in the numeral models

regarding the inter-digit spaces. For this purpose, we use a two-step training mechanism

in which numeral models previously trained on isolated digits are submitted to a string-

based training. In the second step of this training mechanism, a space model is built into

the numeral models.

The strategy of building the space model into the numeral models instead of

using an independent model is an important one in the LBA framework, since possible

future problems when the method is generalized for unknown-length strings will be
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avoided. An independent space model would represent one more model  competing at

each LBA level, which must be taken into account to estimate the string length (number

of digits).

The space model is trained on digit pairs extracted from the NIST database. In

this training, for a given digit pair the corresponding numeral models are concatenated

by using the end-state. In fact, the end-state of the first model is replaced with the first

state of the second model (see Figure 5-11).

Figure 5-11 Concatenation of numeral models during string-based training

For the space model experiment, we use a two-step training mechanism: 1) 10

numeral models are trained first on isolated digits; 2) the numeral models are submitted

to a string-based training using digit pairs (DPs) extracted from the NIST database. The

DP database is balanced in terms of number of naturally segmented, overlapping and

touching numerals. The NIST series hsf_0 to hsf_3 were used to provide the training

and validation samples. Table 5-2 shows the number of samples in the training and

validation sets, and also presents the number of samples representing each string class.

Table 5.2 Digit pair database (strings composed of 2 digits)
String samples Training Validation

Naturally segmented 8,000 53.3% 1,800 51.4%
Touching digits 4,000 26.7% 1,000 28.6%
Overlapping digits 3,000 20.0% 700 20.0%
Total 15,000 100.0% 3,500 100.0%

We use the two-step training mechanism described above to evaluate the

following strategies: 1) the use of one space model for each numeral class; and 2) the

use of one space model representing all numeral classes. In both, just the space model

parameters are estimated during the second step of the training. The parameters

corresponding to the numeral models are kept the same as estimated during the first

space model
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training step based on isolated numerals. The corresponding experimental results are

reported in Chapter 6.

5.3. Verification stage

The second stage of the proposed method consists of two modules: the

Foreground/Background Feature Extraction (FBFE) and the Verification modules. The

main component of this stage consists of an HMM-based digit classifier trained on

isolated digits without taking into account any string contextual information. A new set

of features combines foreground and background information to provide numeral

HMMs with high recognition performance. Moreover, 10 additional numeral HMMs

( λλλ 910 ...,,, vrvrvr ) based on the rows of the numeral images are combined with the

column-based models ( λλλ 910 ...,,, vcvcvc ) to accurately represent the digit classes. The

objective is to use these new models and Viterbi’s algorithm to verify and re-rank the

segmentation-recognition paths provided by the SCB stage.

5.3.1. Foreground/Background Feature Extraction (FBFE) module

The verification stage starts in this module, in which the segmentation points

provided by the first stage are used to define string segments and calculate the

corresponding bounding boxes. Then, for a given segment, this module extracts a

feature vector combining foreground and background information for each column in

the segment bounding box. This feature vector is mapped to one of 256 possible discrete

symbols available in a codebook previously constructed using the method described in

Chapter 3. A similar process is carried out for the rows of the segment. Thus, the output

of the FBFE module consists of two sequences of discrete observations for each

segment: column-based and row-based sequences.

The feature vector computed for each column and for each row of the digit

image is composed of 47 features: the 34 foreground features used in the SR module,

plus 13 background features.

Background features

The background features are based on concavity information. These features are

used to highlight the topological and geometrical properties of the digit classes. Each
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concavity feature represents the number of white pixels that belong to a specific

concavity configuration. The label for each white pixel is chosen based on the Freeman

code with four directions. Each direction is explored up to an encounter with a black

pixel or until the limits imposed by the digit bounding box are met. A white pixel is

labeled if at least two consecutive directions find black pixels (see Figure 5-12 for the

digit 3).

22222XXXXXXX111111111111111
2222XXXXXXXXXX1111111111111
222XXXXXXXXXXXXX11111111111
XXXXXXXXXXXXXXXXX1111111111
XXXXXXXXXXXXXXXXXX111111111
XXXXXXXXXXXXXXXXXXX11111111
XXXXXDDDDDDDDXXXXXXX1111111
3XXXDDDDDDDDDDDXXXXXX111111
333777777777777XXXXXX111111
333777777777777XXXXXX111111
33377777777777XXXXXXX111111
33377777777777XXXXXXX111111
33377777777777XXXXXXX111111
3337777777777XXXXXXXX111111
333777777777XXXXXXXXX111111
333777777777XXXXXXXXXX11111
333777777XXXXXXXXXXXXX11111
333777777XXXXXXXXXXXXXX1111
33377777XXXXXXXXXXXXXXX1111
33377777XXXXXXXXDDDXXXXX111
33377777XXXXXXDDDDDDXXXX111
333777777XXXXDDDDDDDDXXXX11
333777777777777777777XXXX11
333777777777777777777XXXXX1
333777777777777777777XXXXX1
333777777777777777777XXXXXX
333777777777777777777XXXXXX
333777777777777777777XXXXXX
3337777777777777777XXXXXXX4
33377777777777XXXXXXXXXXXX4
333XXXXXXXXXXXXXXXXXXXXXXX4
333XXXXXXXXXXXXXXXXXXXXXX44
333XXXXXXXXXXXXXXXXXXXXX444
3333XXXXXXXXXXXXXX444444444
3333XXXXXX44444444444444444
3333333XX444444444444444444
ZZZZZZZZZZZZZZZZZZZZZZZZZZZ
ZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Feature vector computed for the 1st column
0 3 29 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 A B C D

Code Z is ignored.

Figure 5-12 Concavity features calculated for the digit 3

Thus, we have 9 possible concavity configurations (see Figure 5-13). Moreover,

we consider four more configurations, as defined in [HEUTE et al., 1998], in order to

detect more precisely the presence of loops. The total length of this feature vector is

then 13. The concavity vector is normalized between 0 and 1, by the total of the

concavity codes computed for each column or row of the digit image.

7

D
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Figure 5-13 Concavity configurations used for labelling white pixels

5.3.2. Verification module

The verification module is based on Viterbi’s Algorithm described in Chapter 3.

Each digit class is represented by two numeral HMMs: one based on the image columns

( λλλ 910 ...,,, ccc ) and other based on the image rows ( λλλ 910 ...,,, rrr ) of the digit images.

In this module, the first step concerns the selection of the column ( λλλ 910 ...,,, vcvcvc )

and row ( λλλ 910 ...,,, vrvrvr ) models corresponding to the string segment to be verified.

This is done using the segment recognition result provided by the SCB stage. The

selected pair of models is scored using Viterbi’s algorithm and the sequence of

observations extracted by the FBFE module. The output probabilities of both the

column and row models are combined by summing their logs. The resulting probability

corresponds to the probability of the string segment being correct. A string probability

can be obtained by summing the log of the probability of each segment of the numeral

string. The string probability calculated in the Verification module is added to the

probability of the segmentation-recognition hypothesis obtained from the SCB stage.

The final resulting probability is used to re-rank the string segmentation-recognition

hypothesis.

     a black pixel was found in this direction
     no black pixel was found in this direction

                1                          2                        3                        4

                5                          6                        7                        8

9

               A          B                                         C                         D
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To better explain, let us to consider the N segmentation-recognition hypotheses

provided by the SCB stage as ( )srhsrh N,...,1 , where each srhi  is a structure composed

of the following fields: string length ( )M , segmentation points ( )spsp iMi 11,... − ,

recognition result of each string segment ( )rr iMi ,...,1  and the probability of the

segmentation-recognition hypothesis ( )Psrhi  being correct. In the Verification stage, the

first step is carried out by the FBFE module, in which the segmentation

points ( )spsp iMi 11,... −  are used to define each segment seg ij  and its bounding box. A

feature vector is extracted from each column and row of seg ij  taking into account its

bounding box. The column and row based feature vectors are quantized in order to

generate two sequences of discrete observations representing each seg ij (see Figure 5-

14), respectively. The Verification module uses the recognition result rij  of the

corresponding segment to select the column- and row-based numeral HMMs, λrijc  and

λrijr , which are scored using the respective sequence of observations. A segment

recognition probability ( )Pseg ij  is estimated by summing the probability of the column

and row numeral models. The global string probability is obtained by:

∑=
=

M

j
iji PsegPstr

1
log (5.8)

Finally, the segmentation-recognition probability of the SCB stage ( )Psrhi  and that

obtained in the Verification stage ( )Pstri  are combined as:

PstrPsrhPstring iii loglog += . (5.9)

The resulting string probability ( )Pstring i  is used to re-rank the ith string recognition

hypothesis.
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  (sp1)     (sp2)    (sp3)    (sp4)

(seg3)

Row-based features

Column-based
features

Figure 5-14 A numeral string, the segmentation points (spi), a segment and the
corresponding bounding box (seg3) and the column- and row-based feature extraction

5.3.3. Numeral models

The digit classes are represented by 20 models: 10 column-based ( λλλ 910 ...,,, ccc )

and 10 row-based ( λλλ 910 ...,,, rrr ) models. They have the same end-state topology used

for the numeral models of the SR module. The optimization scheme defined in Chapter

3 is also used to define the final length (number of states) of these models (see Table 5-

3). However, they differ from the SR models in the sense that they are trained without

considering any string contextual information and using a feature set based on both

foreground and background information. Moreover, there is no space model inside

them. The objective is to obtain numeral models which are more powerful in terms of

isolated digit recognition performance than those used in the SR module.

Table 5.3 Number of states of the numeral models
Digit class Column-

based
model

Row-based
model

0 13 14
1 6 16
2 14 16
3 14 20
4 15 18
5 13 19
6 15 18
7 15 18
8 14 20
9 16 21
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5.4. Summary

In this chapter, the proposed method was described in detail. To deal with the

tradeoff between segmentation and recognition a two-stage recognition method was

proposed, which can be categorized as a segmentation-free approach. In the first stage, a

prior segmentation of strings into digits is avoided through the use of an implicit

segmentation strategy. The second stage was used as a verification step. Within a

general overview of the method, each stage and its modules were described. The String

Context-Based (SCB) Stage and its modules: Preprocessing, Foreground Feature

Extraction (FF) and Segmentation-Recognition (SR) and the Verification Stage were

detailed. We have described the HMM models used to represent the digit classes, and an

evaluation of different HMM topologies in the LBA framework. The use of an end-state

in the HMM topology allowed a better distribution of the observations among their

states. This has brought an improvement in terms of segmentation performance in the

SCB stage. This additional state in the HMM topology has also enabled to incorporate

contextual knowledge regarding strings into the numeral models used in the SCB stage.

To this purpose, we have used a string-based training to build a space model inside of

the numeral models. Finally, we have described the Verification stage used to re-rank

the best hypotheses generated by the SCB stage. A set of background features is used as

complementary information for the foreground features used in the SCB stage.
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66..  EExxppeerriimmeennttaall  RReessuullttss

In this chapter, experiments undertaken during the course of development of the

proposed method are detailed. Section 6.1 shows that each experiment is performed

considering isolated digits and numeral strings of different lengths extracted from NIST

SD19 database. A detailed description of this database is available in [GROTHER,

1995].

In the first experiments, string recognition is based on an informed strategy, i.e.

the string length (number of digits) is known. The objective of using this strategy is to

evaluate the system in different conditions, while at the same time adjusting some

important aspects regarding string normalization, feature extraction and HMM

parameters. A non-informed strategy is used in the final experiments. It is important to

point out that all the experiments were conducted considering a zero-level rejection.

The protocol used to implement and evaluate the proposed method consists of

three steps. Section 6.2 presents the first step, which is called SCB Stage Construction

and Evaluation. In this step, we construct a baseline system composed of the

Preprocessing, Forward Features Extraction (FFE) and Segmentation-Recognition (SR)

modules representing the first stage of the proposed numeral string recognition method.

The Preprocessing module is constrcuted taking into account the preliminary analyses

described in Chapter 4. The performance of the SCB stage was improved by adding an

end-state to the HMM structure. This end-state contributed to improving the

segmentation performance of the LBA. Moreover, a space model was built into the

numeral models. Finally, further improvement was obtained by optimizing the HMM

parameters using the scheme described in [WANG, 1994].

Section 6.3 corresponds to the second step of the evaluation protocol, called

Verification Stage Construction and Evaluation. The objective is to re-rank the N best

segmentation-recognition hypotheses of the SCB stage by using a verification strategy.

For this purpose, an isolated digit classifier is developed to check each string segment in

the segmentation-recognition hypotheses of the SCB stage, the general idea here being
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to evaluate the SCB stage with respect to segmentation and recognition of numeral

strings, and to include a further verification step to check and re-rank its results.

In the last step of the evaluation protocol the system is evaluated using a non-

informed strategy, where the string length is unknown. An error analysis is also

presented.

6.1. Databases

The isolated numerals used in these experiments come from NIST SD19, we use

50,000 numeral samples for training, 10,000 for validation and 10,000 for testing. The

training samples were extracted from hsf_0,  hsf_1 and hsf_2, the validation samples

from hsf_7 and the testing samples from hsf_4.

The experiments using numeral strings are based on 12,802 numeral strings

extracted from the hsf_7 series of NIST SD19 and distributed into 6 classes of strings:

2_digit (2,370), 3_digit (2,385), 4_digit (2,345), 5_digit (2,316), 6_digit (2,169) and

10_digit (1,217). These strings exhibit different problems, such as touching, overlapping

and fragmentation. In addition, to evaluate the system in terms of touching digits we use

a subset of data containing 2,069 touching digit pairs (TDPs) also extracted from NIST

SD19.

6.2. SCB stage - construction and evaluation

This section corresponds to the first step of the evaluation protocol, in which the

SCB stage is improved at each new experiment. This stage is composed of

Preprocessing, FFE and SR modules as shown in the general overview presented in

Chapter 5.

In the experiments on string normalization, both slant normalization techniques

proposed in Chapter 4, with and without contextual information, are developed and

evaluated. Moreover, the advantage of using contextual information instead of a size

normalization method to deal with the intra-string size variation is shown. These

experiments also show that the foreground features proposed in the FFE module are

really unaffected by inter-string size variation.
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In addition, we evaluate the impact of adding an end-state to the HMM structure.

Some experiments show the improvement obtained by considering a space model built

into the numeral models. In the final experiments, the HMM parameters are optimized.

6.2.1. Baseline system

The experiments start with the construction of a baseline system, which

corresponds to the SCB stage. In this system version, the HMM parameters and

codebook size were experimentally defined. The best results were obtained with 5-states

discrete left-right numeral HMMs and a codebook of 64 entries. The feature vector is

composed of foreground features extracted from the image columns (34-vector) as

described in Chapter 5. The SR module corresponds to an LBA. It is used to give the

best segmentation-recognition path for a given numeral string. There is no verification

module in the baseline system.

6.2.2. Experiments on slant normalization

These experiments are designed to answer the third question proposed in

Chapter 4: What is the real contribution to numeral string recognition achieved by string

slant to normalize the isolated digits used to train the numeral models of the SCB stage?

To this end, the baseline system is used to compare recognition performance by

considering no slant normalization, slant normalization without contextual information

and with contextual information (CI). In the experiment based on slant normalization

without contextual information, each isolated numeral used for training the numeral

HMMs is slant-corrected using the slope estimated from its own image (θ1  in Figure 4-

9). In contrast, when contextual information is used, the slope for each isolated numeral

is estimated as the slope calculated for its original string (θ2  in Figure 4-9).

Table 6.1 Slant normalization experiments - isolated digit recognition
Experiments Validation (%) Testing (%)
Without slant normalization 93.1 86.2
Slant normalization without CI 95.9 93.0
Slant normalization with CI 95.8 92.6

Table 6-1 presents some preliminary recognition results for isolated digits. We

can observe that contextual information does not contribute to the recognition of slant
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normalized isolated numerals, since the numeral origin is not helpful information in this

case.
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Figure 6-1 Slant normalization experiments - string recognition results

Table 6.2 Slant normalization experiments - string recognition results
Experiments Without slant

normalization
(%)

Slant
normalization

without CI (%)

Slant
normalization
with CI (%)

2_digit 77.63 80.97 84.21
3_digit 66.37 70.64 75.17
4_digit 57.01 64.47 69.25
5_digit 49.30 53.10 61.18
6_digit 43.56 47.34 58.18
10_digit 17.42 31.05 34.42
Global 55.18 60.58 66.48

On the other hand, Figure 6-1 and Table 6-2 show interesting results for numeral

strings. Normalizing without contextual information has brought an improvement of

5.4% in the global string recognition rate, while the use of contextual information

allows an improvement of 11.3%, both compared to the experiments without slant

normalization.

6.2.3. Experiments on size normalization

The preliminary analysis presented in Chapter 4 has shown a significant intra-

string size variation in the NIST database. In these experiments, we evaluate two

strategies to deal with this problem: a) the use of the non-linear size normalization

method described in Chapter 4 to normalize each numeral string along the vertical axis

by using the mean digit height (45 pixels) calculated from the training database; b) the
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use of contextual information regarding intra-string size variation (Intra-SSV) during

training of the numeral models. In the last strategy, features from each training sample

representing an isolated digit are extracted taking into account the height of its original

string bounding box instead of the height of its own bounding box (see Figure 6-2).

Moreover, we consider the foreground features as size invariant. This means that

nothing is done to deal with inter-string size variation.

Figure 6-2. a) Original string; b) String bounding box after slant normalization; c)
Training samples linked to their orginal strings and the bounding box used for feature

extraction.

Table 6.3 Size normalization experiments - isolated digit recognition
Experiments Validation (%) Testing (%)
Without size  normalization 95.80 92.60
Size normalization 95.23 92.20
Intra-SSV 94.85 91.10

Table 6.4 Size normalization experiments - string recognition results
Experiments Without size

normalization (%)
Size normalization

(%)
Intra-SSV

(%)
2_digit 84.21 84.23 85.32
3_digit 75.17 75.68 78.19
4_digit 69.25 69.97 71.34
5_digit 61.18 64.03 66.32
6_digit 58.18 59.79 63.85
10_digit 34.42 40.75 44.04
Global 66.48 68.08 70.43

Table 6-3 shows that the foreground features really do not vary with inter-string

size variation. Moreover, the experiment based on Intra-SSV loses in terms of numeral

recognition, which is possible since the use of this additional contextual information

increases numeral variability. In contrast, this experiment brought a further

improvement of 3.95% to the global string recognition rate (see Table 6-4), even with a

small loss in terms of isolated numeral recognition performance.

The experiments considering the use of a size normalization method have shown

some improvement, but not so relevant as the one brought by the use of Intra-SSV for
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training the numeral models. This is due to additional touching digits and distortions in

the digit strokes caused by the size normalization method.

6.2.4. Contribution of an end-state in the HMM topology

These experiments show that the HMM topology with end-state does not bring

about a significant improvement in the recognition of isolated numerals (about 0.75% in

Table 6-5). On the other hand, it brought about a 7.08% improvement in the global

string recognition rate. This is due the better distribution of the observations among the

HMM states, and a better estimation of the self-transition probability in the last HMM

state (s5). Consequently, the LBA provides a more precise match of numeral models to

the observation sequence. This means a better definition of string segmentation points.

Table 6.5 End-state experiments - string recognition results
Class HMM without

end-state (%)
HMM with end-

state (%)
2_digit 85.32 87.72
3_digit 78.19 82.43
4_digit 71.34 78.17
5_digit 66.32 75.65
6_digit 63.85 71.69
10_digit 44.04 60.64
Global (All classes) 70.43 77.51

Figure 6-3 shows an example in which the segmentation cuts at the top and

bottom were provided respectively by the models with and without an end-state. To

confirm the improvement to segmentation cuts, we carried out an error analysis

considering the 10_digit strings misrecognized using the models without an end-state,

which were all recognized with the models with an end-state. A total of 245 samples

were manually checked.

Figure 6-3 Segmentation points and recognition result produced by the LBA using 5-state
HMMs with an end-state (top) and without an end-state (bottom).

Figure 6-4 shows that 72.2% of these misrecognitions are related to mis-

segmentation problems. Moreover, we compute the difference of location of the
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segmentation points provided by the two HMM structures in terms of the number of

observations. Figure 6-5 shows that the frequencies of location differences equal to 1, 2

and more than 2 observations are, respectively, 47.3%, 18% and 6.9%.
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Figure 6-4 Frequency of recognition and segmentation mistakes
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Figure 6-5 Difference between the location of segmentation points considering the number of observations

6.2.5. Contribution of a space model

In these experiments, the digit pair database and the two-step training

mechanism described in Chapter 5 are used to evaluate the use of a space model. This

corresponds to an additional state in the numeral HMM structure. In these experiments,

the following strategies are evaluated: 1) the use of one space model for each numeral

class; and 2) the use of one space model representing all numeral classes. In both

strategies, the numeral models are first trained on isolated digits. Subsequently, the

space model parameters are estimated during the second-step training on digit pairs. The

parameters corresponding to the numeral models are kept the same as estimated during

the first training step on isolated numerals.

Table 6-6 summarizes all these experiments. It can be observed that the space

model brings about some improvement for each string class. The recognition
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performance of both strategies is almost the same, which shows that the space model is

not dependent on digit class.

Table 6.6 Space model experiments – isolated digits and string recognition
Class HMM with

end-state (%)
HMM with  end-state

and space model*
(%)

HMM with end-
state and space
model** (%)

2_digit 87.72 87.93 87.93
3_digit 82.43 82.73 82.60
4_digit 78.17 78.46 78.42
5_digit 75.65 76.03 76.12
6_digit 71.69 72.00 72.01
10_digit 60.64 61.13 61.30
Global (All classes) 77.51 77.83 77.83

(* one space model by digit class; ** one space model for all numeral classes)

6.2.6. Optimization of the HMM parameters

The scheme described in Chapter 5 for defining HMM length is used to redefine

the number of states of the numeral HMMs in the SCB stage. In addition, a new

codebook is evaluated. The best results are achieved by using the minimum values

shown in Table 6-7, and a codebook with 256 entries. Table 6-8 shows the impact on

the recognition performance for isolated digits, while Table 6-9 does so for numeral

strings. In these experiments, we did not consider the space model.

Table 6.7 Minimum, mean and maximum length for each numeral HMM
Numeral model Number of states

Min Mean Max
0 13 18 24
1 5 6 7
2 14 22 30
3 14 20 26
4 15 22 28
5 13 21 29
6 15 20 25
7 15 20 25
8 14 17 24
9 16 20 25

Table 6.8 Different HMM configurations – isolated digit recognition
HMM based on Foreground features Validation

(%)
Testing

(%)
Baseline system 95.60 91.73
Optimized HMMs and 256-codebook 96.79 94.00
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Table 6.9 HMM parameters optimization – string recognition results
Class Baseline

system (%)
Optimized system

(%)
2_digit 87.72 89.83
3_digit 82.43 84.49
4_digit 78.17 80.38
5_digit 75.65 78.06
6_digit 71.69 75.84
10_digit 60.64 66.23
Global (All classes) 77.51 80.36

We update the space model experiments considering the new HMM parameters. One

space model representing all numeral classes is considered in Table 6-10.

Table 6.10 String recognition results after optimizing the HMM parameters and using a
space model

Class System
without

space model

System
with space

model
2_digit 89.83 90.29
3_digit 84.49 85.87
4_digit 80.38 81.66
5_digit 78.06 79.97
6_digit 75.84 76.76
10_digit 66.23 68.44
Global (All classes) 80.36 81.65

6.3. Verification stage - construction and evaluation

As previously indicated, the verification module is composed of 20 numeral

HMMs: 10 based on the columns and 10 based on the rows of the digit images. These

complementary HMM models are used as an isolated digit classifier for re-ranking the

segmentation-recognition hypotheses provided by the SCB stage.

The same scheme used for optimizing the numeral HMMs of the SR module is

applied to define the length of these new HMM models. The gap between the number of

states in the baseline system and those estimated using the scheme proposed in Chapter

4 is very large (see Table 6-11). For this reason, we decide at this time to evaluate, for

the column-based models, configurations with 6, 8 and 12 states. Table 6-12 shows the

recognition results considering different number of states for the column and row

numeral models.
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Table 6.11 Minimum, mean and maximum length for each numeral HMM
Column based

models
Row based

 models
Numeral model Min Mean Max Min Mean Max

0 13 18 24 14 21 28
1 5 6 7 16 24 32
2 14 22 30 16 24 32
3 14 20 26 20 28 36
4 15 22 28 18 28 39
5 13 21 29 19 27 35
6 15 20 25 18 27 36
7 15 20 25 18 27 36
8 14 17 24 20 29 38
9 16 20 25 21 31 41

Table 6.12 Experiments on isolated digits considering different number of states in the
numeral HMMs

Column models Row models
Number of states Validation

(%)
Testing

(%)
Validation

(%)
Testing

(%)
6 97.63 94.55 95.65 92.27
8 97.78 94.90 - -
12 97.89 95.26 - -
Minimum values (Table 6-11) 98.01 95.51 97.56 95.16
Mean values (Table 6-11) 97.54 94.61 97.40 95.02

The best result is obtained by using the minimum values in Table 6-11. The maximum

values are not evaluated since we have observed a loss in terms of recognition rates for

the mean values. The codebook size is experimentally optimized. We evaluate

codebooks composed of 64, 128, 192, 256 and 320 entries. The codebook composed of

256 entries provided the best results (see Table 6-13).

Table 6.13 Experiments based on different codebook sizes – isolated digit recognition
Column models Row models

Codebook size Validation
(%)

Testing
(%)

Validation
(%)

Testing
(%)

64 95.40 92.94 - -
128 97.89 95.26 97.56 95.16
192 98.24 96.23 98.16 96.63
256 98.44 96.54 98.40 97.09
320 98.32 96.44 98.30 96.92

Finally, Table 6-14 shows the recognition results for isolated digits when the

column and row models are combined. They are combined by summing the log of the

final probability of each model calculated using Viterbi’s algorithm.
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Table 6.14 Combination of column and row models – isolated digit recognition
Validation

(%)
Testing

(%)
Column based features 98.44 96.54
Row based models 98.40 97.09
Combination (column x row models) 99.00 98.02

6.4. Recognition results of known length strings

During these experiments, the SR module provides the 10 best segmentation-

recognition paths for each numeral string. In the Verification stage, the FBFE module

uses the segmentation points of each path as delimiters in the preprocessed string image

to calculate new features based on columns and rows for each string segment. The

recognition result of the first stage is verified using the new set of features and numeral

HMMs available in the Verification stage. We combine the recognition results of the

SCB and Verification stages, as described in Chapter 5. Table 6-15 shows the top 5

recognition results of the first stage of our system, while Table 6-16 presents the top 5

recognition results after the Verification stage. The last line of these tables shows the

recognition results for Touching Digit Pairs (TDPs) using a database composed of 2,069

samples extracted from the NIST database.

Table 6.15 SCB stage – numeral string recognition
Class Top

(1)
Top
(2)

Top
(3)

Top
(4)

Top
(5)

2_digit 90.29 95.35 96.91 97.25 97.46
3_digit 85.87 91.99 92.83 93.20 93.33
4_digit 81.66 89.38 91.17 91.81 91.98
5_digit 79.97 87.69 89.55 90.50 90.67
6_digit 76.76 85.85 87.32 88.47 88.84
10_digit 68.44 73.62 74.28 74.44 74.44
Global 81.65 88.57 90.00 90.62 90.81
TDPs 79.51 88.44 91.64 92.65 93.19

Table 6.16 SCB + Verification stage numeral string recognition
Class Top

(1)
Top
(2)

Top
(3)

Top
(4)

Top
(5)

2_digit 95.23 97.59 98.35 98.48 98.57
3_digit 92.62 95.60 96.18 96.27 96.28
4_digit 92.11 95.35 95.95 96.03 96.12
5_digit 90.00 93.96 94.52 94.69 94.73
6_digit 90.09 94.05 94.88 94.92 95.02
10_digit 86.94 90.30 90.38 90.46 90.46
Global 91.57 94.86 95.47 95.57 95.63
TDPs 89.61 94.39 95.36 95.70 95.84



109

We can see a significant improvement in the recognition performance using the

Verification stage. The main reason is that the foreground features and the numeral

HMMs based on contextual information of the SCB stage may contemplate both the

segmentation and recognition tasks in an implicit segmentation approach, but they do

not provide a strong enough recognition power.

6.5. Recognition results of unknown length strings

So far, string recognition has been based on an informed strategy, i.e. the string

length (number of digits) is known. The objective of using this strategy was to evaluate

the system in different conditions, while at the same time adjusting some important

aspects regarding string normalization, feature extraction and HMM parameters. In the

experiments reported in this section, a non-informed strategy is used, i.e. the string

length is unknown.

To deal with this problem, a maximum value is assigned to the L parameter of

the LBA. This parameter defines the number of levels to be built in the algorithm. Each

level corresponds to a digit in the numeral string. Since the larger numeral string in the

NIST database is composed of 10 digits, we decide to define L=12. Table 6-17 shows

the string recognition results, where it is possible to observe a small loss in terms of

recognition performance.

Table 6.17 SCB + Verification stage – recognition of unknown-length strings
Class Top

(1)
Top
(2)

Top
(3)

Top
(4)

Top
(5)

2_digit 94.13 96.50 97.21 97.22 97.22
3_digit 91.49 94.30 94.72 94.75 94.76
4_digit 91.00 93.94 94.50 94.58 94.63
5_digit 88.43 92.36 92.83 92.96 93.00
6_digit 89.58 93.31 94.05 94.10 94.19
10_digit 85.87 88.99 89.07 89.15 89.15
Global 90.48 93.62 94.14 94.20 94.24
TDPs 86.76 91.01 91.88 92.12 92.41

In another experiment, the use of the string length predictor based on Bayes

theory described in Chapter 3 is considered. It uses the minimum-error-rate decision

rule to predict the string length (number of digits) given the width of the string

bounding box (sbb) in terms of number of columns. A set of string classes is defined as
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{ }digitdigitdigitdigitdigitdigitw _10,_6,_5,_4,_3,_2= , in which class digit_#

corresponds to strings composed of # digits. The a priori probabilities of these classes

are considered ambiguous, i.e. )_2( digitP = )_3( digitP = )_4( digitP = )_5( digitP =

)_6( digitP = )_10( digitP . The parameters of a Gaussian pdf are estimated for each

class by using a training set composed of 44,256 handwritten numeral strings extracted

from the NIST SD19 database. Figure 6-6 shows the number of samples per string

bounding box width, while Figure 6-7 presents the a priori probability of each sbb width

for each string class.
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Then, a string length classifier is designed to classify the sbb_width into M classes of

string lengths by using M  discriminant functions )(sbb_widthg j , computing the

similarities between the unknown data sbb_width and each string class w j  and selecting

the class wi  corresponding to

( ) ( ) ijallforsbb_widthgsbb_widthg ji ≠> . (6.1)

Figure 6-8 shows the scheme of this classifier, where the decision rule is to maximize

the a posteriori probability described in Equation 3.60.

Figure 6-8 Scheme of the classifier used to predict the string length from the width of the
string bounding box (ssb_width)

The same testing set composed of 12,802 numeral strings used to evaluate the

recognition method is used to test this string length predictor. Figure 6-9 shows the

classification results. It is possible to observe that when the right decision is considered

in the best 3 hypotheses, the performance of the string length predictor is very

promising.

)(_2 sbb_widthg digit
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sbb_width Comparison
N_best
hypotheses
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 Figure 6-9 Classification results of the sbb_width into string length classes using the
proposed classifier

Thus, the top 3 decisions of the string length predictor are used to determine the L

parameter of the LBA instead of fixing it at 12. For instance, if the top 3 decisions

belong to the 3_digit, 4_digit and 5_digit class, then five levels are constructed by the

LBA and after that the probabilities of each segmentation-recognition hypothesis

corresponding to these string lengths are compared. The segmentation-recognition

hypothesis with the highest probability is chosen. Table 6-18 shows the recognition

results when the string length is predicted using the proposed string length classifier.

Table 6.18 SCB + Verification stage – recognition of unknown length strings
  Class Top (1) Top (2) Top (3) Top (4) Top (5)
2_digit 94.81 97.17 97.93 98.05 98.14
3_digit 91.61 94.61 95.05 95.09 95.09
4_digit 91.25 94.29 94.84 94.93 94.97
5_digit 88.30 92.18 92.66 92.79 92.83
6_digit 89.07 92.81 93.55 93.59 93.68
10_digit 86.94 90.30 90.38 90.46 90.46
Global 90.66 93.87 94.41 94.50 94.54
TDPs 88.98 93.57 94.88 95.36 95.70

6.6. Error analysis

Table 6-19 shows the confusion matrix computed from the isolated digit

recognition results of the SCB stage. This matrix confirms that the numeral models of

the SCB stage are not powerful enough in terms of recognition performance of isolated

digits. Their weakness are related to the feature extraction method used in this stage, the

objective of which is to maximize the likelihood of the segmentation and recognition of

numeral strings in an implicit segmenation-based process. Most of the confusion occurs



113

between digit classes: 0-6, 5-3, 7-2 and 9-4. However, we observed that the SCB stage

is often able to find the right segmentation points for a given string, even without

achieving the right recognition. This is possible, given the similar length of the

observation sequences representing the digit classes involved in these confusing

situations.

In order to overcome this problem, more discriminative features are necessary,

such as holes, concavities or zoning-based features. However, most of these features

require the digit bounding box or the boundaries of each digit inside the string be

calculated. Otherwise, one digit may interfere in the calculation of the adjacent ones.

However, finding the digit boundaries in the string is the objective of the SCB stage.

Table 6.19 Confusion matrix – isolated digit recognition of the SCB Stage
0 1 2 3 4 5 6 7 8 9

0 929 0 1 0 9 0 20 0 5 8
1 0 980 1 1 0 0 0 2 0 1
2 9 9 969 4 3 1 1 74 5 7
3 0 0 21 980 0 75 3 16 2 4
4 6 5 1 3 950 2 8 13 0 30
5 7 1 0 7 0 897 26 0 2 2
6 29 0 2 0 6 0 909 0 1 0
7 0 4 1 3 13 0 0 874 0 2
8 4 0 4 2 2 18 33 12 981 15
9 16 1 0 0 17 7 0 9 4 931

The confusion matrix in Table 6-20 shows that combining column and row numeral

models to represent each digit class provides an interesting recognition performance.

The background features based on concavities have shown to be a promising way to

distinguish between classes 0-6, 5-3, 7-2 and 9-4. However, there is still some

confusions between classes 5-8, 5-9, 6-5, 7-2 and 9-4.

Table 6.20 Confusion matrix – isolated digit recognition of the verification Stage
0 1 2 3 4 5 6 7 8 9

0 988 0 0 0 0 0 3 0 2 0
1 0 986 0 0 0 0 1 0 0 0
2 1 8 993 3 0 0 0 21 0 0
3 1 0 1 995 0 7 0 12 1 2
4 2 2 1 0 983 0 0 2 0 23
5 0 1 0 1 0 971 24 1 0 1
6 6 1 0 0 2 0 966 0 1 0
7 0 1 4 0 1 0 0 961 0 1
8 2 1 1 1 0 12 6 2 995 9
9 0 0 0 0 14 10 0 1 1 964
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Table 6-21 shows the system mistakes related to the recognition of handwritten

numeral strings categorized as: a) segmentation caused by touching problems; b)

segmentation caused by overlapping problems; c) digit recognition; and d) presence of

noise in the string images. Most of the time, the segmentation mistakes are related to

touching or overlapping problems. As expected the worst segmentation problem

concerns touching digits (21.28%). Few segmentation mistakes (0.85%) occurred in

naturally segmented strings and they are due to the lack of samples for training the

space model. The digit pair database is not representative of strings of different lengths.

However, most of the mistakes in the applying the method are due to recognition

problems (62.12%). Few mistakes are related to presence of noise in the string images.

Table 6.21 Summary of the system mistakes (%)
System errors in percentage

Touching 21.28Segmentation
Overlapping 12.34

Naturally segmented 0.85 33.62
Recognition 62.12

Noise 4.26

Table 6-22 shows some examples of incorrectly recognized strings, while Table 6-23

presents some examples of correctly recognized strings.

Table 6.22 Examples of incorrectly recognized strings

84187 (84297) 03223 (03283)

32072 (37077)  95537 (45537)

47534 (97539) 60114 (60118)

77478 (72478)
78434 (75434)

 90398 (90898) 72937 (12931)

                  88 (86)
      68170 (60170)

13211 (13210)
   22344 (29344)
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Table 6.23 Examples of correctly recognized strings

54593 8419

2024 6001

7433 3258

               25                50

                 56                  25

92174
22699

20044 69878

20356
76540

43733
87251

48890 65381

6.7. Discussion

From the preliminary analyses on the NIST database presented in Chapter 4, we

have observed that the use of a slant normalization method brought about a significant

reduction in the number of overlaps between adjacent numerals in strings. The proposed

MKSC slant normalization method achieves a more significant reduction (60.83%) than

that provided by the KSC method (49.42%). This has indicated that slant normalization

is really helpful in alleviating overlapping problems. Moreover, slant estimated from

isolated digits and that estimated from their original strings differ by more than 10.95o

in 11.74% of the 197,784 digits analyzed using the MKSC method. The proposed
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MKSC method also reduces the number of cases where this difference is significant.

This means that we can approximate the slant estimated from the string to the slant

estimated from each isolated numeral in the string. All these observations justify an

investigation of the real contribution to string recognition of using the proposed slant

normalization based on contextual information. This is achieved through the

experiments presented in Section 6.2.2. They have shown that the use of contextual

information to provide the same conditions during training and testing is a promising

strategy in an implicit segmentation-based method. The use of slant normalization

brought about an improvement of 5.4% to the global string recognition rate, while the

use of slant normalization based on contextual information allowed an improvement of

11.3%.

The strategies used to deal with size variation have also taken into account the

implicit segmentation-based method of the SCB stage. The non-linear size

normalization method described in Chapter 4 has shown to be a promising way to

reduce the intra-string size variation. However, the experiments in Section 6.2.3 have

shown that training the numeral HMMs taking into account the intra-string size

variation is more promising. With this contextual information during training of the

numeral models, we avoid the possible distortions on the digit strokes caused by a non-

linear size normalization method. These experiments have shown that the use of size

normalization brought about an improvement of 1.6% in recognition performance, while

the use of IntraSSV as contextual information brought about an improvement of 3.95%.

The HMM topology with an end-state has ensured a more precise definition of

the string segmentation cuts by the LBA. The experiments presented in Section 6.2.4

shows that although it does not bring about a significant improvement in the recognition

of isolated numerals (about 0.75% in Table 6-5), it did bring about an improvement of

7.08% in the global string recognition rate. This additional state also enabled the use of

a two-step training mechanism to incorporate further string contextual information in

the numeral models. Section 6.2.5 shows experiments considering the use of a space

model built inside of the numeral models. We can observe that the space model brought

about some improvement in terms of recognition performance for each string class.

Even with not such significant results, these experiments have shown that an

investigation on modeling other kinds of interactions between adjacent digits, such as
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touching and overlapping, may be a promising way of obtaining accurate string

representation. To this end, further work can be done to train a pause model instead of a

space model.

The scheme used for optimizing the HMM parameters of the numeral models in

the SCB stage provides a further improvement of 2.81% in the global string recognition

rate. In this optimization scheme, we have redefined the number of states of the numeral

HMMs and also the codebook size.

After all these experiments had been conducted to construct and evaluate the

SCB stage, the final recognition rates for strings composed of 2, 3, 4 5 6 and 10 digits

were: 90.29%, 85.87%, 81.66%, 79.97%, 76.76% and 68.44% respectively.

The Verification stage has been shown to make a significant contribution to

string recognition performance. After this stage, the final recognition rate of known

length strings composed of 2, 3, 4, 5, 6, and 10 digits were: 95.23%, 92.62%, 92.11%,

90.00%, 90.09%, and 86.94% respectively. This means an improvement on the global

string recognition rate of 9.92%. Similarly, the recognition rate of touching digit pairs

(TDPs) had improved from 79.51% to 89.61%.

The strategies used to consider unknown-length numeral strings showed a small

loss in terms of recognition performance compared to the previous results. The most

promising results were obtained using the string length predictor. The final recognition

rates of strings composed of 2, 3, 4, 5, 6, and 10 digits were: 94.81%, 91.61%, 91.25%,

88.30%, 89.07%, and 86.94% respectively. This means a loss in terms of global

recognition rate of 0.91%.

Table 6-24 shows a comparison of the proposed method with other methods.

Even considering only methods evaluated on numeral strings extracted from the NIST

database, the comparison with other methods is delicate in some cases because of the

uncertainty concerning the exact data being used and the different number of samples.

Table 6-25 presents a similar comparison for touching digit pairs.
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Table 6.24 Performance of Numeral Strings based data in NIST SD19
Reference String class Recognition

rate
Error
rate

Rejection
rate

# of samples on
the testing set

2_digit 87.00 1.00 12.00 1,000
3_digit 84.00 1.00 15.00 1,000
4_digit 76.00 1.00 23.00 1,000
5_digit 71.00 1.00 28.00 1,000
6_digit 62.00 1.00 37.00 1,000

[KEELER & RUMELHART
1992]

10_digit NA NA NA NA
2_digit 89.79 10.21 NA 1,000
3_digit 84.64 15.36 NA 1,000
4_digit 80.63 19.37 NA 1,000
5_digit 76.05 23.95 NA 1,000
6_digit 74.54 25.46 NA 1,000

[FUJISAWA & NAKANO
1992]

10_digit NA NA NA NA
2_digit 94.20 1.00 4.80 1,000
3_digit 87.90 1.00 11.10 1,000
4_digit 79.90 1.00 19.10 1,000
5_digit 75.60 1.00 23.40 1,000
6_digit 63.30 1.00 35.70 1,000

[MATIN et al., 1993]

10_digit NA NA NA NA
2_digit 96.20 3.80 0.00 981
3_digit 92.70 7.30 0.00 986
4_digit 93.20 6.80 0.00 988
5_digit 91.10 8.90 0.00 988
6_digit 90.30 9.70 0.00 982

[HA et al., 1998]

10_digit NA NA NA NA
2_digit 95.23 4.77 NA 1,000
3_digit 88.01 11.99 NA 1,000
4_digit 80.69 19.31 NA 1,000
5_digit 78.61 21.39 NA 1,000
6_digit 70.49 29.51 NA 1,000

[LEE & KIM, 1999]

10_digit NA NA NA NA
[ELMS et al., 1998] 2,3,4,5,6 and

10_digits
74.20 25.80 NA 1,400

2_digit 92.00 8.00 0.00 24
3_digit 100.00 0.00 0.00 21
4_digit 95.00 5.00 0.00 21
5_digit 94.00 6.00 0.00 17
6_digit 92.00 8.00 0.00 12

[YOON et al., 2000]

10_digit 100.00 0.00 0.00 5
2_digit 95.23 4.77 0.00 2,370
3_digit 92.62 7.38 0.00 2,385
4_digit 92.11 7.89 0.00 2,345
5_digit 90.00 10.00 0.00 2,316
6_digit 90.09 9.91 0.00 2,169

Proposed method
(known length strings)

10_digit 86.94 13.06 0.00 1,217
2_digit 94.81 5.19 0.00 2,370
3_digit 91.61 8.39 0.00 2,385
4_digit 91.25 8.75 0.00 2,345
5_digit 88.30 11.70 0.00 2,316
6_digit 89.07 10.93 0.00 2,169

Proposed method
(unknown length strings)

10_digit 86.94 13.06 0.00 1,217
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Table 6.25 Performance of Touching Digit Pairs (TDPs) extracted from NIST SD19
Reference Recognition

rate
Error
rate

Rejection
rate

# of Samples on
the testing set

[CHI et al., 1995] 89.20 10.80 2.80 3,355
[HU & YAN, 1998] 89.66 10.34 NA 3,355
[ZHOU et al., 2000] 85.70 3.50 NA 4,395
Proposed method 89.61 10.39 0.00 2,069
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77..  CCoonncclluussiioonnss  aanndd  FFuuttuurree  WWoorrkk

In this work, we have described a two-stage HMM-based method for

recognizing handwritten numeral strings. With the first stage, we showed that the use of

an implicit segmentation strategy is a promising way to deal with the string difficulties

described in Chapter 1. The reason is that it avoids the need to define heuristics to group

parts of broken digits or to separate touching digits, such as those used in the

segmentation-based methods described in Chapter 2. However, there is some cost

attached to this strategy related to the loss in terms of recognition performance caused

by joining segmentation and recognition processes. During the experiments, it was

possible to observe that the feature set and numeral models defined in the first stage

(SCB), which have often been shown to be capable of finding the right segmentation

points, are not strong enough in terms of recognition performance. The final SCB

recognition rates of strings composed of 2, 3, 4, 5, 6, and 10 digits were 90.29%,

85.87%, 81.66%, 79.97%, 76.76% and 68.44% respectively. The average recognition

rate of isolated digits was 94.00%. For touching digit pairs, this stage achieved a

recognition rate of 79.51%.

With the second stage, we showed the contribution to handwritten numeral

string recognition performance of considering a further verification step, which is used

to re-rank the hypotheses of the first stage. Verification compensates for the loss in

terms of recognition performance resulting from the necessary tradeoff between

segmentation and recognition carried out in the implicit segmentation method.

This two-stage method has enabled the use of two different feature sets and

numeral models: one taking into account both segmentation and recognition aspects in

an implicit segmentation-based strategy, and the other considering only the recognition

aspects of isolated digits. In other words, the Verification stage is used to completment

the SCB stage, in the sense that their features and numeral models are strong in terms of

recognition performance.

The experiments considering the Verification Stage showed a significant

improvement in the recognition performance. The average recognition rate of isolated
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digits was 98.02%. The final recognition rate of known-length strings composed of 2, 3,

4, 5, 6, and 10 digits were 95.23%, 92.62%, 92.11%, 90.00%, 90.09% and 86.94%

respectively. In addition, for touching digit pairs the method achieved a recognition rate

of 89.61%. During these experiments, we observed that the use of a verification stage

brought about an average improvement on the global string recognition rate of 9.92%.

The strategies used to consider unknown-length numeral strings showed a small

loss in terms of recognition performance. The most promising results were obtained

using the string length predictor. The final recognition rates for strings composed of 2,

3, 4, 5, 6 and 10 digits were 94.81%, 91.61%, 91.25%, 88.30%, 89.07% and 86.94%

respectively. This means a loss in terms of global recognition rate of 0.91%.

We may improve the performance of the proposed method by further

development in a number of areas. A simple improvement would be to develop a

rejection mechanism. In contrast, we can improve the performance of the proposed

method by further investigating feature sets, since this method enables the combining of

different features at each stage. For instance, a new set of foreground features can be

defined to improve the segmentation-recognition performance of the first stage, while

new features with powerful recognition performance can be evaluated in the second

stage.

In a similar way, further work can be carried out to improve the numeral models

of each stage. For instance, in the first stage, it would be interesting to investigate a way

of integrating additional contextual information into the numeral models regarding the

interaction between adjacent numerals in strings. For this purpose, it could be

interesting to build a pause instead of a space model into the numeral models. The same

two-step training mechanism could be used to train this pause model. The idea is to pay

some attention to the possibility of integrating handwriting-specific knowledge into the

model structure to obtain a more accurate representation of numeral strings. We believe

that, as the knowledge gained from ligatures and spaces between adjacent characters has

been shown to be very important in increasing the word recognition performance in

[CHO et al., 1995] and [DOLFING, 1998], the knowledge about overlapping, touching

and spaces between adjacent numerals may play the same role for numeral strings.
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These investigations of features and models can also take into account the

development of character models instead of digit models. These can be used to extend

the method to the recognition of handwritten words.
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AA..  AAppppeennddiixx  ––  EExxttrraaccttiioonn  ooff  nnuummeerraall  ssttrriinnggss  ffrroomm  tthhee  NNIISSTT
SSDD1199  ddaattaabbaassee

In this appendix, the processes used for extracting numeral strings from the full-

page forms available in Special Database 19 (SD19) of the National Institute of

Standard Technology (NIST) database are described. With the handwritten numeral

strings extracted from these forms, we created a database called NString_SD19, which

is valuable for training, validating and testing recognizers that go beyond isolated digit

classification.

A detailed description of the origin, publication history and organization of

NIST SD19 is available in [Grother 95]. In Section A.1, we present a brief description

of this public database. In Section A.2, the process used to extract the numeral strings

from the NIST database is described. In Section A.3, we present the process used to

provide an isolated digit database in which each digit sample has a link with its original

string. Finally, in Section A.4, the structure and content of the new NStringSD19

database are presented.

A.1. NIST Special Database 19 (SD19)

The SD19 is composed of 3669 full-page binary images of Handwritten Sample

Forms (HSF), which are organized in eight series, denoted by hsf_{0,1,2,3,4,6,7,8}. A

total of 814,255 handwritten labeled characters (digit and alphabetic) have been

segmented from these forms and organized by class, field and writer (upper and lower

cases are merged). These isolated characters, as well as the full-page images, can be

found on the original SD19 compact disc.

Table A-1. HSF series distribution
Series Number of HSF

pages
hsf_0 500
hsf_1 500
hsf_2 500
hsf_3 600
hsf_4 500
hsf_6 499
hsf_7 500
hsf_8 70
Total 3669
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Table A.1 shows the distribution of HSF pages per series. Usually, the

hsf_{0,1,2,3,6,8} are used for training purposes, hsf_7 for validation and hsf_4 for

testing. Note that hsf_5 does not exists in SD19.

Figure A-1 Handwriting Sample Form (HSF full-page form)
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An example of a full-page NIST form or HSF page is shown in Figure A-1. We

can see that an HSF page consists of 34 fields, 28 of which contain only numeric

characters. The field descriptions are presented in Table A-2.

Table A-2 Handwriting sample form (HSF) fields
Field Description

fld_0 Name
fld_1 Date
fld_2 City/State/ZIP
fld_3 … fld_30 Numeric field
fld_31 Lower case character box
fld_32 Upper case character box
fld_33 Free format text

A total of 100 HSF templates were used to fill up the HSF pages. The number,

size and location of the fields are the same in all template variations. However, they

present different strings of characters. These templates are provided by NIST SD19 in

the form of truth files “refxx.txt”, where xx represents a NIST template from 00 to 99.

Similarly, the page image files (or forms) have name of the form “fyyyy_xx.tif”, where

yyyy identifies the writer and xx the template number.

Numeric Fields

Each HSF page is composed of 28 numeric fields (fields fld_3 to fld_30), filled

out with numeral strings of different lengths. There are strings of 2, 3, 4, 5, 6 or 101

digits. Table A-3 presents the HSF numeric fields, their respective string length and the

total number of strings extracted from the HSF pages using the process described in this

Appendix.

Table A-3 Field number, respective string length and number of samples
Field Number String length Total number

of strings
fld_3, fld_4, fld_5 10 11,007

fld_6, fld_15, fld_19, fld_23, fld_27 2 18,345
fld_7, fld_11, fld_20, fld_24, fld_28 3 18,345
fld_8, fld_12, fld_16, fld_25, fld_29 4 18,345
fld_9, fld_13, fld_17, fld_21, fld_30 5 18,345

fld_10, fld_14, fld_18, fld_22, fld_26 6 18,345
Total 102,732

                                                          
1 The 10 digit string is always composed of the digits from 0 to 9 in that order and is invariant from one
template to another.
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The labels of these fields are found in the reference files (templates) provided by

NIST, where each line consists of a field name and the data that the writer was

instructed to print in it.

A.2. The Numeral String Database (NString_SD19)

The process used to extract the numeral strings from the HSF pages is based on

two steps: 1) field extraction from the HSF page; 2) preprocessing for bounding box

deskewing and removal. In the first step, we detect and extract the field boxes from a

page and save them separately as new files of the form “fyyyy_xx_w.tif” where yyyy

and xx identify, as before, the writer and the template, and w corresponds to the field

number from 3 to 30. To achieve this, a process based on vertical and horizontal

projections is used to locate the coordinates of the upper-left corner of the field fld_0.

The coordinates of the other fields are calculated using the fld_0 coordinates as a

reference.

In order to extract the numeral strings from these cut fields (102,732), the

preprocessing first deskews the field bounding box. Then, vertical and horizontal

projections are used locate the lines of the field bounding box in order to remove them.

The resulting images contained only the cleaned numeric strings files are saved as

“cdfyyyy_xx_w.tif” (cd = cleaned and deskewed2).

A.2.1. Field extraction from the HSF page

This segmentation process consists of locating and extracting all the numeric

fields from the HSF pages, using the position of the first HSF field (fld_0) as a

reference. Considering that the number, size and location of the fields are the same

among all the HSF template variations, a data structure composed of line and column

offset values for each numeric field from fld_0 is used. This data structure is initialized

for a given HSF page sample using the distance of the upper left corner coordinates of

each numeric field from the upper left corner coordinates of fld_0. This relative distance

                                                          
2 The deskewing was only applied on the field bounding box. No character deskewing or slant correction
was performed.
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reduces the effects of possible variability in the position of the HSF pages during the

scanning process.

The first step of the process is to locate the field fld_0. Then, the upper left

coordinates of that field and the offset values in the data structure are used to calculate

the position of each numeric field. The search for the fld_0 upper left corner is

performed in a specific region defined using 30% of the HSF page height, and 50% of

the HSF page width. The algorithm searches for a horizontal single black run with a size

greater than a parameter HS (30% of the fld_0 width). The line position of this

horizontal single black run is used as the x coordinate of fld_0. Then, in order to find the

y coordinate, a search for a vertical line is performed which is considered to start in x

with a size greater than VS (60% of the fld_0 height). Figure A-2 shows some field

images extracted from an HSF page.

Figure A-2 Extracted numeric fields of different lengths

a)

b)

c)

d)

e)

f)
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A.2.2. Preprocessing for bounding box deskewing and removal

After extracting the numeric fields from the HSF page, a field filtering process is

used to eliminate the bounding box and the additional information outside it, which are

considered as noise. The result of this process is an image containing just the

handwritten numeral string. The algorithm is composed of two steps: skew correction

and noise removal.

A.2.2.1. Skew correction

This preprocessing step is necessary since the process used to remove the field

bounding box is based on vertical and horizontal projections. The algorithm used for

skew correction can be summarized as follows:

1) Skew estimation

• Vertical projection (VP) is calculated;

• The peak corresponding to the bottom line of the bounding box is found in VP;

• A region around the peak is defined as the bottom line position. For this, all the

entries adjacent to the peak with size greater than 40% of the peak size are

considered to be part of the bottom line. The estimated bottom line position is

used to calculate the bounding box skew (slope α );

2) Skew Correction

The slope α  is used to rotate the field image. The ( )yx,  coordinates of each

black pixel are replaced by the coordinates ( )yx ′′, , as follows:
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A.2.2.2. Noise removal

This step eliminates the bounding box and all the information outside it. It is

based on horizontal and vertical projections of the black pixels (histograms). The peaks
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of these projections are used as limits to erase the bounding box and the surrounding

noise. The filtering process first erases the horizontal lines, as follows:

• Horizontal projection (HP) is calculated;

• Two peaks (ps, pi) corresponding to the top and bottom horizontal lines of

the field bounding box are located in HP;

• The internal limits of these lines (ls, li) are also found in HP. All entries

adjacent to the peaks, greater than 40% of the peak size, are considered to be

part of the horizontal lines (see Figure A-3);

• All information from the internal limit (ls) is erased. A process similar to this

is applied from the internal limit (li).

Subsequently, another similar process is applied by which the vertical projection

is used to erase the vertical lines of the bounding box. Some examples of numeric fields

after preprocessing are shown in Figure A-4.

                  Figure A-3 Field and respective ps, pi, ls and li locations
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Figure A-4 Numeric field images after preprocessing

A.2.3. Semi-automatic checking process

The numeral strings were then automatically classified using a process based on

isolated digit recognition. Each CC (connected component) in a given numeral string is

submitted to the CENPARMI digit recognizer. If all the CCs are recognized as digits,

and the global string recognition result is the same as that provided in the NIST

reference file, the numeral string is considered to be a naturally segmented sample.

These strings are used during the preliminary analyses of the NIST database, when

some important observations are made, such as numeral height variation and the effect

of slant correction on overlapping numerals.

The remaining strings were manually verified and classified according to the

difficulties of recognition: touching, fragmented, noise and other. As a by-product of the

automatic process for numeral string classification, we obtained an isolated digit

database, in which there is a link between an isolated digit image and its original

a)

b)

c)

d)

e)

f)
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numeral string. This link is provided by the image file names. The image file name

refers to an isolated digit in the form:  cdfyyyy_xx_w_z.tif”, where we have the original

numeral string image name plus ‘z’, where z corresponds to the digit position in the

string. These numerals are also used in the preliminary analyses to allow some testing of

slant-correction of isolated numerals, using the slant estimated from the original strings.

Figure A-5 shows an overview of the process used to select naturally segmented

numeral strings and isolated digits linked to them.

Figure A-5 Process to select naturally segmented strings and corresponding isolated digits

Note:
CC – Connected Component
CCi – ith connected component
d1, d2,...  – each digit string after recognition
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A.2.4. NString_SD19 organization and contents

The structure of NString_SD19 is shown in Figure A-6. We have in the

hsf_series directory one subdirectory for each NIST series, a subdirectory for the

reference files and a subdirectory for the isolated digits.

* list of file names saved as text files.

Figure A-6 Structure of NString_SD19

Each HSF series subdirectory is divided into 3 sections:

Ø hsf_x/pages: contains a copy of the original full-page images;

Ø hsf_x/fields: contains the original numeric fields extracted from each HSF page.

Ø hsf_x/numeral_strings: contains the numeral string extracted from the field images.

where x is the series number.

In the numeral_string subdirectory, we can find two groups of file name lists. A

first group is composed of the following lists: 2_digit.list, 3_digit.list, 4_digit.list,

5_digit.list, 6_digit.list, 10_digit.list. These lists are used to classify the numeral strings

by length. The second group is composed of lists used to classify the numeral strings by

quality, as:

Ø natseg.list: contains naturally segmented numeral strings;

Ø touch.list: contains numeral strings with touching numerals;

NString_SD19

Ø hsf_0
.
.
.
Ø hsf_3
.
.
Ø hsf_8

Ø digits

Ø truerefs

Ø page
Ø fields
Ø numeral_strings

lists*

Ø training
Ø validation
Ø testing
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Ø fragm.list: contains numeral strings with fragmented numerals. The fragmentation

can be caused by the scanning process or by handwriting style;

Ø noise.list: contains numeral strings damaged by the field extraction process, or filled

out twice by the writer;

Ø others.list: contains numeral strings in which one or more digits were not recognized

by the classifier.

The digits directory is divided into 3 sections: training, validation and testing

(which contains handwritten isolated digits extracted respectively from hsf_{0, 1, 2,3},

hsf_7 and hsf_4). Table A-4 shows the distribution by digit class in each of these

sections, while Table A-5 summarizes the number of strings extracted from each series

of NIST_SD19 and their classification by quality, as: naturally segmented, touching,

fragmented, noise and other.

Table A-4 Distribution by digit class
Class training

hsf_{0, 1, 2, 3}
Validation
hsf_7

Testing
Hsf_4

0 19,776 4,629 2,899
1 20,966 5,010 3,231
2 19,608 4,675 2,958
3 19,766 4,692 3,060
4 19,652 4,624 2,869
5 17,532 4,187 2,726
6 19,993 4,715 3,044
7 20,509 4,933 3,009
8 19,866 4,681 2,978
9 20,116 4,860 2,979

Table A-5 Number of strings extracted from each NIST series and their classification by
quality

Series Number of
numeral
strings

Naturally
segmented

Touching Fragmented Noise Other

Hsf_0 14,000 10,353 1,081 1,027 840 699
Hsf_1 14,000 10,325 961 1,152 934 628
Hsf_2 14,000 10,007 801 1,342 889 961
Hsf_3 16,800 12,511 799 1,549 998 943
Hsf_4 14,000 6,485 1,282 1,946 878 3,409
Hsf_6 13,972 10,519 943 1,086 597 827
Hsf_7 14,000 10,194 1,052 884 465 1,405
Hsf_8 1,960 1,501 105 127 55 172
Total 102,739 71,895 7,024 9,113 5,656 9,044
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A.2.5. Summary

In this appendix the process used to create a new database from NIST_SD19 is

described. With the numeral strings extracted from the HSF pages we create the

Nstring_SD19 database, which is usefull for evaluating handwritten numeral string

recognition methods.

Notice that all processes used to extract, deskew, and clean the fields were

strongly based on heuristics, since our main objective was just to obtain enough numeral

string samples for constructing and evaluating the method proposed in this thesis. Even

the explicit segmentation used to extract the string digits in order to submit them to the

CENPARMI classifier is a simple connected component detection, since at that time,

the proposed method was under_construction. The objective of this process was just to

reduce efforts of the manual check, and also extracting some samples of naturally

segmented strings and their corresponding digits to be used in the preliminary analyses

presented in Chapter 4. We can say that a by_product of this thesis is the creation of the

NStringSD19 database which is available in CD. The work on the NStringSD19

database was done in parallel to the construction and evaluation of the proposed method

for recognising numeral strings.  This means that we did not use all the benefits of this

database, such as the previously knowledge about the number of touching, framented

and noise images in each series of the NIST database.


