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a b s t r a c t

The performance of Hidden Markov Models (HMMs) targeted for complex real-world appli-
cations are often degraded because they are designed a priori using limited training data
and prior knowledge, and because the classification environment changes during opera-
tions. Incremental learning of new data sequences allows to adapt HMM parameters as
new data becomes available, without having to retrain from the start on all accumulated
training data. This paper presents a survey of techniques found in literature that are suit-
able for incremental learning of HMM parameters. These techniques are classified accord-
ing to the objective function, optimization technique and target application, involving
block-wise and symbol-wise learning of parameters. Convergence properties of these tech-
niques are presented along with an analysis of time and memory complexity. In addition,
the challenges faced when these techniques are applied to incremental learning is assessed
for scenarios in which the new training data is limited and abundant. While the conver-
gence rate and resource requirements are critical factors when incremental learning is per-
formed through one pass over abundant stream of data, effective stopping criteria and
management of validation sets are important when learning is performed through several
iterations over limited data. In both cases managing the learning rate to integrate pre-
existing knowledge and new data is crucial for maintaining a high level of performance.
Finally, this paper underscores the need for empirical benchmarking studies among
techniques presented in literature, and proposes several evaluation criteria based on
non-parametric statistical testing to facilitate the selection of techniques given a particular
application domain.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The Hidden Markov Model (HMM) is a stochastic model for sequential data. It is a stochastic process determined by the
two interrelated mechanisms – a latent Markov chain having a finite number of states, and a set of observation probability
distributions, each one associated with a state. At each discrete time instant, the process is assumed to be in a state, and an
observation is generated by the probability distribution corresponding to the current state. The HMM is termed discrete if the
output alphabet is finite, and continuous if the output alphabet is not necessarily finite, e.g., each state is governed by a para-
metric density function [32,34,80].

Theoretical and empirical results have shown that, given an adequate number of states and a sufficiently rich set of data,
HMMs are capable of representing probability distributions corresponding to complex real-world phenomena in terms of
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simple and compact models [8,11]. This is supported by the success of HMMs in various practical applications, where it has
become a predominant methodology for design of automatic speech recognition systems (ASR) [3,48,80]. It has also been
successfully applied to various other fields, such as signature verification [31,50] communication and control [32,46], bioin-
formatics [30,58], computer vision [13,81], and computer and network security [22,61,97]. For instance, in the area of com-
puter and network security, a growing number of HMM applications are found in intrusion detection systems (IDSs). HMMs
have been applied either to anomaly detection, to model normal patterns of behavior, or in misuse detection, to model a
predefined set of attacks. HMM applications in anomaly and misuse detection have emerged in both main categories of
IDS - host-based IDS [97,100,22,61,51] and network-based IDS [39,93]. Moreover, HMMs have recently begun to emerge
in wireless IDS applications [19,55].

In many practical applications, the collection and analysis of training data is expensive and time consuming. As a conse-
quence, data for training an HMM is often limited in practice, and may over time no longer be representative of the under-
lying data distribution. However, the performance of a generative model like the HMM depends heavily on the availability of
an adequate amount of representative training data to estimate its parameters, and in some cases its topology. In static
environments, where the underlying data distribution remains fixed, designing a HMM with a limited number of training
observations may significantly degrade performance. This is also the case when new information emerges in dynamically-
changing environments, where underlying data distribution varies or drifts in time. A HMM that is trained using data sampled
from the environment will therefore incorporate some uncertainty with respect to the underlying data distribution [29].

It is common to acquire additional training data from the environment at some point in time after a pattern classification
system has originally been trained and deployed for operations. Since limited training data is typically employed in practice,
and underlying data distribution are susceptible to change, a system based on HMMs should allow for adaptation in response
to new training data from the operational environment or other sources (see Fig. 1). The ability to efficiently adapt HMM
parameters in response to newly-acquired training data, throughincremental learning, is therefore an undisputed asset for
sustaining a high level of performance. Indeed, refining a HMM to novelty encountered in the environment may reduce
its uncertainty with respect to the underlying data distribution.

Following definitions by Langley [63] and Polikar et al. [77], an HMM that performs incremental learning can indepen-
dently learn one new block of training data at a time. With incremental learning, HMM parameters should be efficiently up-
dated from new data1 without requiring access to the previously-learned training data. In addition, parameters should be
updated without corrupting previously-acquired knowledge.

Standard techniques for estimating HMM parameters involve batch learning, based either on specialized Expectation–
Maximization (EM) techniques [26], such as the Baum-Welch (BW) algorithm [6], or on numerical optimization techniques,
such as the Gradient Descent algorithm [67]. In either case, HMM parameters are estimated over several training iterations,
until some objective function, e.g., maximum likelihood over some independent validation data, is maximized. For a batch
learning technique, a fixed-length sequence O = o1, o2, . . ., oT of T training observations oi is assumed to be available through-
out the training process. Assuming that O is assembled into a block D of training data, each training iteration typically in-
volves observing all sub-sequences in D prior to updating HMM parameters.

Given a new block D2 of training data, a HMM that has previously been trained on D1 through batch learning cannot
accommodate D2 without accumulating and storing all training data in memory, and training from the start using all of
the cumulative data, D2

S
D1. Otherwise, the previously-acquired knowledge may be corrupted, thereby compromising

HMM performance. As illustrated in Fig. 2, the HMM probabilities to be optimized may become trapped in local optima
of the new cost function associated with D2

S
D1. In fact, probabilities estimated after training on D1 may not constitute a

good starting point for training on D2. Updating HMM parameters on all data using some batch learning technique may
therefore incur a significant cost in terms of processing time and storage requirements. The time and memory complexity
of standard techniques grows linearly with the length, T, and number of training sequences R, and quadratically with the
number of HMM states, N.

As an alternative, several on-line learning techniques proposed in literature may be applied for incremental learning.
These include techniques based on EM, numerical optimization and recursive estimation, and assume the observation a
of stream of data. Some of these techniques are designed to update HMM parameters at a symbol level (symbol-wise), while
others update parameters at a sequence level (block-wise). Techniques for on-line symbol-wise learning, also referred to as
recursive or sequential estimation techniques, are designed for situations in which training symbols are received one at a
time, and HMM parameters are re-estimated upon observing each new symbol. Techniques for on-line block-wise learning
are designed for situations in which training symbols are organized into a block of one or more sub-sequences, and HMM
parameters are re-estimated upon observing each new sub-sequence of symbols. In either case, HMM parameters are
updated from new training data, without requiring access to the previously-learned training data, and potentially without
corrupting previously acquired knowledge.

The main advantage of applying these techniques to incremental learning is the ability to sustain a high level of perfor-
mance yet bound the memory requirements, since there is no need for storing the data from previous training phases. Fur-
thermore, since training is only performed on the new training sequences, and not on all accumulated data, on-line learning
1 A block of training data is defined as a sequence of training observations that has been segmented into overlapping or non-overlapping sub-sequences
according to a user-defined window size.



Fig. 1. A generic incremental learning scenario where blocks of data are used to update the classifier in an incremental fashion over a period of time. Let D1,
D2, . . ., Dn be the blocks of training data available to the classifier at discrete instants in time t1, t2, . . ., tn. The classifier starts with initial hypothesis h0 which
constitutes the prior knowledge of the domain. Thus, h0 gets updated to h1 on the basis of D1, and h1 gets updated to h2 on the basis of data D2, and so forth
[18].

Fig. 2. An illustration of the degeneration that may occur with batch learning of a new block of data. Suppose that the dotted curve represents the cost
function associated with a system trained on block D1, and that the plain curve represents the cost function associated with a system trained on the
cumulative data D1

S
D2. Point (1) represents the optimum solution of batch learning performed on D1, while point (4) is the optimum solution for batch

learning performed on D1
S

D2. If point (1) is used as a starting point for incremental training on D2 (point (2)), then it will become trapped in the local
optimum at point (3).
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would also lower time complexity needed to learn new data. Finally, incremental learning may provide a powerful tool in a
human-centric approach, where domain experts may be called upon to gradually design and update HMMs as the opera-
tional environment unfolds.

This paper contains a survey of techniques that apply to incremental learning of HMM parameters.2 These techniques are
classified according to objective function, optimization technique, and target application that involve block-wise and symbol-
wise learning of parameters. An analysis of their convergence properties and of their time and memory complexity is presented.
The applicability of these techniques is assessed for incremental learning scenarios in which new data is either abundant or
limited. Finally, the advantages and shortcomings of these techniques are outlined, providing the key issues and guidelines
for their application in different learning scenarios.

This paper is structured according to five sections. The next section briefly reviews the batch learning techniques
employed to estimate HMM parameters, and introduces the formalism needed to support subsequent sections. Section 3
provides a taxonomy of on-line learning techniques form literature that apply for incremental learning of HMM parameters.
An analysis of their convergence properties and resource requirements is provided in Section 4. Then, an analysis of their
potential applicability in different incremental learning scenarios is presented in Section 5. This paper concludes with a
discussion of the main challenges to be addressed for incremental learning of HMM parameters.
2. Batch learning of HMM parameters

A discrete-time finite-state HMM consists of N hidden states in the finite-state space S = {S1, . . . ,SN} of the Markov process.
Starting from an initial state Si, determined by the initial state probability distribution pi, at each discrete-time instant, the
process transits from state Si to state Sj according to the transition probability distribution aij. The process then emits a
2 A predefined topology and permissible transitions between the states (e.g., ergodic or temporal) is assumed when learning HMM parameters. In many real-
world applications, the best topology is determined empirically. Although adapting HMM topologies, or jointly HMM parameters and topologies, to new data
may have a significant impact on performance, this issue is beyond the scope of the paper.
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symbol v according to the output probability distribution bj(v) of the current state Sj (see Fig. 3). With a discrete HMM, the
output bj(v) is finite, and with a continuous HMM, the output alphabet is is governed by a parametric density function.

Let qt 2 S denotes the state of the process at time t, where qt = i indicates that the state is Si at time t. An observation se-
quence of length T is denoted by O = o1, . . ., oT, where ot is the observation at time t. The sub-sequence om, om+1, . . ., on, n > m,
by the concise notation om:n. The HMM is then usually parametrized by k = (p,A,B), where

p = {pi} denotes the vector of initial state probability distribution, pi , P(q1 = i)16i6N,
A = {aij} denotes the state transition probability distribution, aij , P(qt+1 = jjqt = i)16i, j6N,

B = {bj(k)} denotes the state output probability distribution,
3 It is
� bj(k) , P(ot = vkjqt = j)16j6N,16k6M for a finite and discrete alphabet V ¼ fv1;v2; . . . ;vMg;vk 2 RL with M distinct
observable symbols.

� bj(v) , f(ot = vjqt = j)16j6N for an infinite and continuous alphabet V ¼ fv jv 2 RLg. For instance, if the observation
density for each state in the HMM is described by a univariate Gaussian distribution3 bjðotÞ � N ðlj;rjÞ, for a scalar
observation ot, with a mean l and a variance r2 then the state output density is given by:

bjðotjlj;rjÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

2prj

p exp �
ðot � ljÞ

2

2r2
j

" #
ð1Þ
For a finite-discrete HMM, both A, B and p0 (the transpose of vector p) are row stochastic, which impose the following
constraints:
XN

j¼1

aij ¼ 18i;
XM

k¼1

bjðkÞ ¼ 1 8j; and
XN

i¼1

pi ¼ 1 ð2Þ

aij; bjðkÞ;pi 2 ½0;1�; 8ijk ð3Þ
For a continuous HMM, other constraints arise depending on the probability density function (pdf) of the states. For example,
in the Gaussian distribution case, (1), one must ensure that the standard deviation is always positive, rj > 0, "j.

Given a HMM initialized according to the constraints described so far, there are three tasks of interest – the evaluation,
decoding, and training tasks [80]. The rest of this section focuses on batch learning techniques applied to address the third
task, and in particular estimating HMM parameters, along with the definitions needed for future sections. For further details
regarding the HMM, the reader is referred to the extensive literature [32,34,80].

Standard techniques for estimating HMM parameters k = (p,A,B) involve batch learning are based either on expectation–
maximization or numerical optimization techniques. With batch learning, a finite-length sequence O = o1, o2, . . ., oT of T train-
ing observations oi is assumed to be available throughout the training process. The parameters are estimated over several
training iterations, until some objective function is maximized. Each training iteration involves observing all the observation
symbols prior to updating HMM parameters.

2.1. Objective functions

The estimation of HMM parameters is frequently performed according to the Maximum Likelihood Estimation (MLE) cri-
terion. Other criteria such as the maximum mutual information (MMI), and minimum discrimination information (MDI) also
be used for estimating HMM parameters [35]. However, the widespread use of the MLE for HMM is a result of its attractive
statistical properties – consistency and asymptotic normality – proven under general conditions [66,10]. MLE consists in max-
imizing the likelihood P(o1:Tjk) or equivalently the log-likelihood of the training data with regard to the model parameters:
‘TðkÞ , log Pðo1:T jkÞ ¼ log
X

S

Pðo1:T ; SjkÞ ¼ log
X

S

Pðo1:T jS; kÞPðSjkÞ ¼ log
X
q2S

YT

t¼1

Pðqt jqt�1; kÞPðotjqt; kÞ

¼ log
X
q2S

pq1
bq1
ðo1Þ

YT

t¼2

aqt�1 ;qt
bqt
ðotÞ ¼ log

X
q2S

YT

t¼1

aqt�1 ;qt
bqt
ðotÞ; by considering aq0 ;q1

¼ pq1
ð4Þ
over the model parameter space K:
k� ¼ arg max
k2K

‘TðkÞ ð5Þ
There is no known analytical solution to HMM parameters estimation since the log-likelihood function (4) depends on the
unknown probability values of the latent states, S. In practice, iterative optimization procedures such as the expectation–max-
imization or the standard numerical optimizations techniques, which are described in the following sub-sections, are usually
employed. In order to proceed iteratively any numerical optimization procedure must also evaluate the log-likelihood
usually termed as finite-state Markov chains in white Gaussian noise in control and communication community. It is also referred to as normal HMM.



Fig. 3. An illustration of an ergodic three states HMM with either continuous or discrete output observations (left). A discrete HMM with N states and M
symbols transits between the hidden states qt, and generates the observations ot (right).
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function at any value. However, a direct evaluation of the log-likelihood function (4) requires a summation over all possible
hidden state sequences q1:T 2 S, which has a prohibitively costly time complexity OðTNTÞ.

Fortunately, there exists efficient recursive procedures for evaluating the log-likelihood values as well as estimating the
conditional state (6) and joint state (7) densities associated with a given observation sequence o1:t:
csjtðiÞ , Pðqs ¼ ijo1:t ; kÞ ð6Þ
nsjtði; jÞ , Pðqs ¼ i; qsþ1 ¼ jjo1:t ; kÞ ð7Þ
in order to provide an optimal estimate, in the minimum mean square error (MMSE) sense, for the unknown state q̂sjtðiÞ fre-
quency – the key problem for HMM parameters estimation:
q̂sjtðiÞ ¼ E qs ¼ ijo1:tf g ¼
Xt

s¼1

csjtðiÞ ð8Þ
In estimation theory, this conditional estimation problem is called filtering if s = t; prediction if s > t, and smoothing if s < t.
The smoothing problem is termed fixed-point smoothing when computing the E{qsjo1:t}for a fixed s and increasing t = s, s + 1,
. . ., fixed-lag smoothing when computing the E{qsjo1:t+D} for a fixed lag D > 0, and fixed-interval smoothing when computing
the E{qsjo1:T} for all s = 1, 2, . . ., t, . . ., T.

The fixed-interval smoothing problem is therefore to find the best estimate of the states at any time conditioned on the
entire observations sequence, which is typically performed in batch learning using the Forward-Backward (FB) [21,6,5] or
the Forward-Filtering Backward-Smoothing (FFBS) [34,17] algorithms. Typically, fixed-interval smoothing algorithms in-
volve an estimation of the filtered state density, for t = 1, . . ., T:
ctjtðiÞ , Pðqt ¼ ijo1:t ; kÞ ð9Þ
which provides the best estimate of the conditional distribution of states given the past and present observations. It can be
computed from the predictive state density (10), which provides the best estimate of the conditional distribution of states
given only the past observations,
ctjt�1ðiÞ , Pðqt ¼ ijo1:t�1; kÞ; c1j0ðiÞ ¼ pi ð10Þ
according to the following recursion:
ctjtðiÞ ¼
ctjt�1ðiÞbiðotÞPN
j¼1ctjt�1ðjÞbjðotÞ

ð11Þ
The predictive state density (10) at time t + 1 can be then computed from the filtered state density (9) at time t:
ctþ1jtðjÞ ¼
XN

i¼1

ctjtðiÞaij ð12Þ
Given an observation sequence o1:T, the log-likelihood is therefore evaluated with a time complexity of OðN2TÞ:
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‘TðkÞ ¼
XT

t¼1

log Pðotjo1:t�1Þ ¼
XT

t¼1

log
XN

i¼1

Pðqt ¼ i; ot jo1:t�1Þ ¼
XT

t¼1

log
XN

i¼1

biðotÞctjt�1ðiÞ ð13Þ
An alternative computation of the likelihood can be written as sum of the a-variables [80]:
‘TðkÞ ¼ log
XN

i¼1

aTðiÞ ð14Þ
where
atðiÞ , Pðqt ¼ i; o1:tjkÞ; ð15Þ
The elements of a are not probability measures unless normalized, and hence susceptible to underflow when applied to com-
pute the likelihood of a long sequence of observation. In practice, the a-variables are commonly scaled by their summation at
each time step [67,80]:
�atðiÞ ¼
atðiÞP

iatðiÞ
¼ Pðqt ¼ i; o1:tkÞ

Pðo1:tkÞ
¼ Pðqt ¼ ijo1:t; kÞ
making for a filtered state estimate (9), as detailed in [52].
The predictive state density (10) is in fact a fixed-lag smoothing with one symbol look-ahead (D = 1). In situations where

some delay or latency between receiving the observations and updating HMM parameters can be tolerated, incorporating
more lag provides stability and improved performance over filtering estimation [1]. This is because the latter relies only
on the information that is available at the current time. Although they provide an approximation of the conditional state
distributions, both filtering and fixed-lag smoothing have been the core of several on-line learning techniques, presented
in Section 3, since their recursions can go on indefinitely in time providing the state estimates without (or with a small fixed)
delay. In addition, they require a linear memory complexity OðNÞ that is independent of the observation length T, while
maintaining a low computational complexity OðN2TÞ.

The backward recursion of the FFBS (or FB) algorithm exploits the filtered state estimates in order to provide an exact
smoothed estimate for the states, for t = T � 1, . . ., 1:
ctjTðiÞ ¼
XN

j¼1

ntjTði; jÞ ð16Þ

ntjTði; jÞ ¼
ctjtðiÞaijPN
i¼1ctjtðiÞaij

ctþ1jTðjÞ ð17Þ
Although fixed-interval smoothing is the standard for batch learning, waiting until the last observation before providing the
state estimates incurs long delays as well as a large memory complexity OðNTÞ, to store the filtered state estimate for the
entire observation sequence (see [52] for more details). These issues are prohibitive for on-line learning.

A Forward Only (FO) fixed-interval smoothing algorithm has been proposed as an alternative to reduce the memory
requirement of the FB or FFBS algorithms [87,33,23]. The basic idea is to directly propagate all smoothed information in
the forward pass:
rtði; j; kÞ ,
Xt�1

s¼1

Pðqs ¼ i; qsþ1 ¼ j; qt ¼ kjo1:t ; kÞ;
which represents the probability of having made a transition from state Si to state Sj at some point in the past (s < t) and of
ending up in state Sk at the current time t. At the next time step, rt+1(i, j,k) can be recursively computed from rt(i, j,k) using:
rtði; j; kÞ ¼
XN

n¼1

rt�1ði; j;nÞankbkðotÞ þ at�1ðiÞaikbkðotÞdjk ð18Þ
from which the smoothed state densities can be obtained, at time t, by marginalizing over the states. The advantage of the FO
algorithm is that it provides the exact smoothed state estimate at each time step with the linear memory complexity OðNÞ.
However, this is achieved at the expenses of increasing the time complexity toOðN4TÞ as can be seen in the four-dimensional
recursion (18). As described in Section 3, several authors have proposed the FO algorithm for on-line learning of HMM
parameters.

2.2. Optimization techniques

Maximum-likelihood (ML) parameter estimation in HMMs can be carried out using either the expectation maximization
(EM) [6,26] or standard numerical optimization techniques [76,101]. This section describes both estimation procedures for
HMMs.
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2.2.1. Expectation–maximization
The EM is a general iterative method to find the MLE of the parameters of an underlying distribution given a data set

when the data is incomplete or has missing values. EM alternates between computing an expectation of the likelihood
(E-step) – by including the latent variables as if they were observed – and a maximization of the expected likelihood (M-
step) found on the E-step. The parameters found in the M-step are then used to initiate another iteration until a monotonic
convergence to a stationary point of the likelihood [26].

In the context of HMM, the basic idea consists of optimizing an auxiliary Q-function (also known as the intermediate
quantity of EM):
QTðk; kðkÞÞ ¼ EkðkÞ flog Pðo1:T ; q1:T jkÞjo1:T ; k
ðkÞg ¼

X
q2S

Pðo1:T ; q1:T jkðkÞÞ log Pðo1:T ; q1:T jkÞ ð19Þ
which is the expected value of the complete-data log-likelihood (logP(o1:T,q1:Tjk)). By assuming the probability values of the
hidden states, theQ-function is therefore easier to optimize than the incomplete-data log-likelihood (4). For a particular state
sequence q 2 S, the complete data log-likelihood is given by:
log Pðo1:T ; q1:T jkÞ ¼ log pq1

YT�1

t¼1

aqt qtþ1
bqtþ1
ðotþ1Þ

" #
The Q-function for this particular state sequence (q) can then be explicitly expressed in terms of HMM parameters:
Qðk; kðkÞÞ ¼
X
q2S

Pðo1:T ; q1:T jkðkÞÞ logpq1
þ
X
q2S

Pðo1:T ; q1:T jkðkÞÞ
XT�1

t¼1

log aqt qtþ1
þ
X
q2S

Pðo1:T ; q1:T jkðkÞÞ
XT�1

t¼1

log bqtþ1
ðotþ1Þ
Finally, by marginalizing over all state sequences in the state space S the Q-function has the following form (for a discrete
output HMM):
QTðk; kðkÞÞ ¼
XN

i¼1

cðkÞ1jTðiÞ log pi þ
XT�1

t¼1

XN

i¼1

XN

j¼1

nðkÞtjT ði; jÞ log aij þ
XT

t¼1

XM

j¼1

cðkÞtjT ðjÞdotvm log bjðmÞ ð20Þ
Each term on the right hand side can be maximized individually using Lagrange multipliers subject to the relevant con-
straints (2). The solutions provide the same update formulas as those provided with the Baum-Welch algorithm below,
(21)–(23).

Starting with an initial guess k(0), subsequent iterations, k = 1, 2, . . ., of the EM consist in:

E-step: computing the auxiliary function Qðk; kðkÞÞ
M-step: determining the model that maximizes Q; kðkþ1Þ ¼ arg maxkQðk; kðkÞÞ

If instead of maximizing Q, we find some k(k+1) that increases the likelihood (partial M-step) then it is called Generalized
EM (GEM), which is also guaranteed to converge [99].

The Baum-Welch (BW) algorithm [7,6] is a specialized EM algorithm for estimating HMM parameters. Originally intro-
duced to estimate the parameters when provided with a single discrete observations sequence [6], it was later extended
for multiple observation sequences [67,68] and for continuous observations [69,49]. Given a sequence o1:T of T observations,
an HMM with N states, and an initial guess k(0), the BW algorithm proceeds as follows. During each iteration k, the FB or FF-BS
computes the expected number of state transitions and state emissions based on the current model (E-step), and then re-
estimated the model parameters (M-step) using:
pðkþ1Þ
i ¼ cðkÞ1jTðiÞ ¼ ðexpected frequency of state Si at t ¼ 1Þ ð21Þ

aðkþ1Þ
ij ¼

PT�1
t¼1 nðkÞtjT ði; jÞPT�1

t¼1 cðkÞtjT ðiÞ
¼ expected # of trans: from Si ! Sj

expected # of trans: from Si
ð22Þ

bðkþ1Þ
j ðmÞ ¼

PT
t¼1c

ðkÞ
tjT ðjÞdotvmPT

t¼1c
ðkÞ
tjT ðjÞ

¼ expected # of times in Sj observing vm

expected # of times in Sj
ð23Þ
Each iteration of the E-step and M-step is guaranteed to increase the likelihood of the observations giving the new model
until a convergence to a stationary point of the likelihood [6,5,26].

For a continuous HMM only the last term of (20) and hence (23) must be changed according to the state parametric den-
sity. For instance, for an HMM with Gaussian state densities (1), the state outputs update are given by:
clj ¼
PT

t¼1ctðjÞotPT
t¼1ctðjÞ

; and r̂2
j ¼

PT
t¼1ctðjÞðot � ljÞ

2PT
t¼1ctðjÞ
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For multiple independent observation sequences, Levinson et al. [67] proposed averaging the smoothed conditional densi-
ties, (16) and (17), over all observation sequences in the E-step, then updating the model parameters (M-step). Li et al.
[68] propose using a combinatorial method on individual observations probabilities, rather than their product, to overcome
the independence assumption. For both cases, re-estimating parameters with the standard EM requires accessing all of the
sequences in the training block during each iteration.

2.2.2. Standard numerical optimization
While EM-based techniques indirectly optimize the log-likelihood function (4) through the complete-data log-likelihood

(19), standard numerical optimization methods work directly with the log-likelihood function and its derivatives.
For instance, starting with an initial guess of the model k0, first order methods such as the gradient descent update the

model at each iteration k using:
kðkþ1Þ ¼ kðkÞ þ gkrk‘TðkðkÞÞ ð24Þ
where the learning rate gk decrease monotonically over training iterations to ensure that the sequence ‘T(k(k)) is non-
decreasing. It is usually chosen as to maximize the objective function in the search direction:
gk ¼ arg max
gP0

‘T ½kðkÞ þ grkðkðkÞÞ� ð25Þ
However due to its linear convergence rate, gradient descent methods could converge slowly in large optimization spaces.
Second order methods guarantee a faster convergence. For instance, the Newton-Raphson method updates the model at

each iteration k using:
kðkþ1Þ ¼ kðkÞ � H�1ðkðkÞÞrk‘TðkðkÞÞ ð26Þ
The convergence rate is at least quadratic at the convergence point, for which the Hessian is negative definite. However, if
the initial parameters are far from those of true model parameters, the convergence is not guaranteed. A learning rate gk

similar to (25) can be introduced to control the step length in the search direction. A polynomial interpolation of ‘T(k) along
the line-segment between k(k) and k(k+1) is usually used in practice, since it is often impossible to have an exact maximum of
the line search. Nonetheless, the Hessian H ¼ r2

k‘TðkðkÞÞ could be non-invertible or not negative semi-definite.
To avoid these issues, quasi-Newton methods use an adaptive matrix W(k) which provides an approximation of the Hes-

sian at each iteration:
kðkþ1Þ ¼ kðkÞ þ gkW ðkÞrk‘TðkðkÞÞ ð27Þ
where W(k) is negative definite to ensure that ascent direction is chosen. The numerical issues associated with the matrix
inversion are therefore avoided, while still exhibiting the convergence rate of the Newton algorithms near the convergence
point.

For a discrete HMM, the gradient of the log-likelihood rk‘T(k(k)) can be computed using the state conditional densities
obtained from the fixed-interval smoothing algorithms (16) and (17) as:
@‘TðkðkÞÞ
@aij

¼
PT�1

t¼1 nðkÞtjT ði; jÞ
aij

ð28Þ

@‘TðkðkÞÞ
@bjðmÞ

¼
PT

t¼1c
ðkÞ
tjT ðjÞdotvm

bjðmÞ
ð29Þ
An alternative computation can be achieved by using a recursive computation of the gradient itself as described in sub-Sec-
tion 3.2.2. Once the gradient of the likelihood is computed, the HMM parameters are then additively updated according to,
for instance, the first order (24) or second order (27) methods. For multiple independent observation sequences, the deriv-
atives with reference to each model parameter (28) and (29) must be accumulated and averaged over all observation se-
quences, prior to updating the model parameters. The reader is referred to Cappe et al. [16], Qin et al. [79] for more
details on quasi-Newton, and to Turner [94] on Levenberg–Marquardt optimizations for HMMs.

Standard numerical optimization methods have to ensure parameter constraints, (2) and (3), explicitly through either a
constrained optimization or a re-parametrization to reduce the problem to unconstrained optimization. Levinson et al. [67]
detail the early implementation of a constrained optimization for HMM using Lagrange multipliers. Among the uncon-
strained transformation is the soft-max parametrization proposed in [4], which maps the bounded space (a,b) to the un-
bounded space (u,v):
aij ¼
euijP
keuik

and bðkÞ ¼ ev jðkÞP
zev jðzÞ

ð30Þ
Other unconstrained parametrization consist of a projection of the model parameters onto the constraints domain, such as a
simplex or a sphere. The parametrization on a simplex [56,88]
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M ¼ aij 2 RN�1 :
XN�1

j¼1

aij 6 1; and aij P 0

( )
ð31Þ
enforces the stochastic constraints (2) by updating all but one of the parameters in each row, ali ¼ 1�
PN

j–li
aij;1 6 li 6 N.

However, it does not ensure the positiveness of the parameters (3). One improvement consists in using a restricted projec-
tion to the space of positive matrices for some positive � [2]:
M� ¼ faij 2 RN�1 :
XN�1

j¼1

aij 6 1� �; and aij P �g ð32Þ
Alternatively, parametrization on a sphere adequately enforces both constraints [25]:
SN�1 ¼ sij :
XN

j¼1

s2
ij ¼ 1

( )
ð33Þ
where aij ¼ s2
ij. This also has the advantage that the constraint manifold is differentiable at all points.

2.2.3. Expectation–maximization vs. gradient-based techniques
For discrete output HMMs, the EM algorithm is generally easier to apply than gradient-based technique since derivatives,

Hessian inversion, line-search, etc., are not required. It is numerically more robust against poor initialization values or when
the model has large number of parameters. It also has a monotonic convergence propriety which is not maintained in gra-
dient-based techniques, and ensures parameters constraints implicitly. However the rate of convergence of the EM can be
very slow, it is usually linear in the neighborhood of a maximum [26]. This is comparable to gradient descent but slower
than the quadratic convergence that can be achieved with second order or conjugate gradient techniques. Nevertheless,
EM steps do not always involve closed-form expressions. In such cases the maximization must be carried out numerically.
Another advantage of numerical optimization techniques is that they automatically yield an estimate of parameters vari-
ances [17,101]. Since there is no clear advantage of one technique on the other, hybrid algorithms have been proposed to
take advantage from both techniques [14,62].

Given a block of data with R independent sub-sequences each of length T and an N state HMM, the time an complexity per
iteration for EM and gradient-based techniques are OðRN2TÞ and their memory complexity is OðNTÞ. This is because they
both rely on the fixed-interval smoothing algorithms (16) and (17) to compute the state densities for the E-step or the gra-
dient of the log-likelihood. The difference is related to the procedures employed inside gradient-based techniques such as
the line search, and to the speed of convergence (see [17, Chapter 10] for more details).

3. On-line learning of HMM parameters

Several on-line learning techniques from the literature may be applied to incremental learning of HMM parameters from
new training sequences. Fig. 4 presents a taxonomy of techniques for on-line learning of HMM parameters, according to
objective function, optimization technique, and target application. As shown in the figure, they fall in the categories of stan-
dard numerical optimization, expectation–maximization and recursive estimation, with the objective of either maximizing
the likelihood estimation (MLE) criterion, minimizing the model divergence (MMD) of parameters penalized with the MLE,
or minimizing the output or state prediction error (MPE).

The target application implies a scenario for data organization and learning. Some techniques have been designed for
block-wise estimation of HMM parameters, while others for symbol-wise estimation of parameters. Block-wise techniques
are designed for scenarios in which training symbols are organized into a block of sub-sequences and the HMM re-estimates
its parameters after observing each sub-sequence. In contrast, symbol-wise techniques, also known as recursive or sequen-
tial techniques, are designed for scenarios in which training symbols are observed one at a time, from a stream of symbols,
and the HMM parameters are re-estimated upon observing each new symbol. The rest of this section provides a survey of
techniques for on-line learning of HMM parameters shown in Fig. 4.

3.1. Minimum Model Divergence (MMD)

The objective function now consists of maximization of the log-likelihood as well as minimization of parameter diver-
gence using some entropy measures. A dual cost function that maximizes the log-likelihood while minimizing the diver-
gence of HMM parameters, using an exponentiated gradient optimization framework [54], was first proposed for the
block-wise case [86], then extended to symbol-wise case [41]. Both block- and symbol-wise algorithms described below,
have been evaluated on speech data.

Block-wise Based on the exponentiated gradient framework [54], Singer and Warmuth [86] proposed an objective function
for discrete HMMs that minimizes the divergence between old and new HMM parameters penalized by the negative log-like-
lihood of each sequence multiplied by a fixed positive learning rate (g > 0):



Fig. 4. Taxonomy of techniques for on-line learning of HMM parameters.
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k̂ðkþ1Þ ¼ arg min
k
ðKLðkðkþ1Þ; kðkÞÞ � g‘Tðkðkþ1ÞÞÞ
where KL(k(k+1),k(k)) is the Kullback-Leibler (KL) divergence between the distributions k(k+1) and k(k). KL is defined between
two probability distributions Pk0 ðo1:tÞ and Pk(o1:t) by
KLtðPk0kPkÞ ¼ E log
Pk0 ðo1:tÞ
Pkðo1:tÞ

� �
¼
X

t

Pk0 ðo1:tÞ log
Pk0 ðo1:tÞ
Pkðo1:tÞ

ð34Þ
which is always non-negative and attains its global minimum at zero for Pk ! Pkð0Þ . Its limit (t ?1) is KL rate or relative
entropy rate.

The model parameters are updated after processing each observation sequence:
aðkþ1Þ
ij ¼ 1

Z1
aðkÞij exp � g

niðkðkÞÞ
@‘TðkðkÞÞ
@aij

 !
ð35Þ

bðkþ1Þ
j ðmÞ ¼ 1

Z2
bðkÞj ðmÞ exp � g

njðkðkÞÞ
@‘TðkðkÞÞ
@bjðmÞ

 !
ð36Þ
where Z1 and Z2 are normalization factors. The expected usage of state i;niðkðkÞÞ ¼
PT

t¼1ctjTðiÞ can be computed using the fil-
tering estimation (16), and the derivatives of the log-likelihood are given by (28) and (29).

Symbol-wise Garg and Warmuth [41] extended the block-wise learning of Singer and Warmuth [86] to symbol-wise. The
model divergence is however penalized by the negative of the log-likelihood increment, i.e., log-likelihood of each new sym-
bol given all previous ones. At each time instant the following optimization is performed:
k̂tþ1 ¼ arg min
k
ðKLðktþ1; ktÞ � g log Pðotþ1jo1:t; ktþ1ÞÞ
which can be decoupled into similar update, for both state transition and state output, as with (35) and (36), respectively.
The main difference resides however in the computation of the expected usage of state i. It is computed recursively based on
each symbol with niðktÞ ¼

Pt
s¼1csjtðiÞ, and the gradient of the log-likelihood increment. The recursive formulas proposed to

ni(kt) are very similar to those for recursive maximum likelihood estimation proposed by LeGland and Mevel [64,65] (see
Section 3.2).



W. Khreich et al. / Information Sciences 197 (2012) 105–130 115
3.2. Maximum Likelihood Estimation (MLE)

The attractive asymptotic properties of the MLE, have prompted many attempts to extend this objective function to on-
line learning for different applications. In particular, indirect maximization of log-likelihood, through the complete log-like-
lihood (19), has been the basis for many on-line learning algorithms. Neal and Hinton [75] have proposed an ‘‘incremental’’
version of the EM algorithm to accelerate its convergence on a finite training data set.4 Assuming a fixed training data set is
divided into n blocks, each iteration of this algorithm performs a partial E-step (for a selected block) then updates the model
parameters (M-step), until a convergence criterion is met. The improved convergence is attributed to exploiting new informa-
tion more quickly, rather than waiting for the complete data to be processed before updating the parameters [42,75]. Many
extensions to this algorithm have emerged for on-line block-wise [28,73,95] or symbol-wise [36,89,91] learning.

Direct maximization of the log-likelihood function is first proposed for the block-wise case using the GD algorithm [4],
and then using the quasi-Newton algorithm [16] for faster convergence. A recursive block-wise estimation technique is also
proposed for this optimization [83,84]. Finally, extensions to the work of Titterington [92] and Weinstein et al. [98] for inde-
pendent data has lead to a symbol-wise technique to optimize the complete data likelihood (19) recursively, at each time
step.

3.2.1. On-line expectation–maximization
An important property of the ‘‘incremental’’ version of EM resides in its flexibility [75]. There is no constraints on how

data is divided into blocks. The block might range from a single observation symbol to one or multiple sequence of obser-
vations. In addition, one can choose to update the parameters by selecting data blocks cyclically, or by any other scheme.
Accordingly, several algorithms have extended this approach to on-line learning of HMM parameters. As detailed next, this
is achieved by initializing the smoothed densities to zero, processing the training data (symbol-wise or block-wise) sequen-
tially, and updating the HMM after each symbol or sequence.

Block-wise Digalakis [28] derived an on-line algorithm of EM to update the parameters of a continuous HMM for auto-
matic speech recognition (ASR), and showed faster convergence and higher recognition rate over the batch algorithm. Sim-
ilarly, Mizuno et al. [73] proposed a similar algorithm for ASR using a discrete HMM however. Given the initial model k0, and
after processing each new sequence of observation of length T, the state densities are recursively computed using:
4 In c
5 The
XT�1

t¼1

n̂ðkþ1Þ
tjT ði; jÞ ¼ ð1� gkÞ

XT�1

t¼1

nðkÞtjT ði; jÞ þ gk

XT�1

t¼1

nðkþ1Þ
tjT ði; jÞ

XT

t¼1

ĉðkþ1Þ
tjT ðjÞdot m ¼ ð1� gkÞ

XT

t¼1

cðkÞtjT ðjÞdot m þ gk

XT

t¼1

cðkþ1Þ
tjT ðjÞdot m
and the model parameters are then directly updated using (22) and (23). The learning rate gk is proposed in polynomial form
gk ¼ c 1

k

� �d for some positive constants c and d.
Symbol-wise Stiller and Radons [91] introduced a recursive algorithm for non-stationary discrete Mealy HMMs,5 which is

essentially based on the FO (18). The main idea is to recursively update a tensorial quantity,
nt
ijkðotÞ ¼

Xt

s¼1

as�1
i as�1

ij ðosÞbs;t
jk dot os ð37Þ
which accounts for the weighted sum of transition probability from state Si to Sj (at time s), emitting symbol ot and being in
state k at time t P s. The model parameters (emission on arcs) are condensed in at

ijðotÞ ¼ Pðqt ¼ j; ot jqt�1 ¼ iÞ. The forward-
vector (as) and backward-matrix (bs,t) are recursively computed by:
as ¼ p
Ys
r¼1

aðr�1ÞðorÞ and bs;t ¼
Yt

r¼sþ1

ar�1ðorÞ
Eq. (37) can therefore be recursively computed as function of the old nt
ijkðotÞ and the new symbol ot+1:
ntþ1
ijk ðotþ1Þ ¼

X
k̂

nt
ijk̂ðotÞ

P
ln

t
k̂klðotþ1ÞP

s
P

ĵ;̂ln
t
îĵlðosÞ

þ gtdot otþ1 djk

X
l;m

X
s

nt
lmiðosÞ

P
kn

t
ijkðotÞP

s
P

ĵ;k̂n
t
ijk̂ðosÞ
where gt is a time-varying learning rate. Finally, the model parameters as
ij

� �
and the probability of the system currently

being in state k as
k

� �
can be estimated at any time using:
at
ijðoÞ ¼

P
kn

t
ijkðotÞP

t

P
ĵ;k̂n

t
ijk̂ðotÞ

and as
k ¼

P
i;j

P
tn

t
ijkðotÞP

i;j;k̂

P
tn

t
ijk̂ðotÞ
ontrast, the incremental scenario considered in this paper restricts accessing a block of data once it has been processed.
emission is produced on transitions (Mealy model) while for all other algorithms presented the output is produced on states (Moore model).
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This algorithm have been recently proposed for Moore HMMs [74] and then generalized [15].
Stenger et al. [89] approximated the fixed-interval smoothing used in BW by the filtered state density (9) for updating the

parameters of a continuous HMM in the context of adaptive background modeling from video sequences. The filtered state
density is recursively computed independently of the sequence length. The model parameters are then updated, at each time
step, by
6 Thi
at
ij ¼

Pt�2
s¼1ctjsðiÞPt�1
s¼1ctjsðiÞ

at�1
ij þ

nt�1jtði; jÞPt�1
s¼1ctjsðiÞ

ð38Þ

lt
i ¼

Pt�1
s¼1ctjsðiÞPt
s¼1ctjsðiÞ

lt�1
i þ

ctjtðiÞotPt
s¼1ctjsðiÞ

r2
i

	 
T ¼ RT
i ¼

Pt�1
s¼1ctjsðiÞPt
s¼1ctjsðiÞ

Rt�1
i þ

ctjtðiÞðot � lt
i Þ

2Pt
s¼1ctjsðiÞ
An exponential forgetting factor is proposed to reduce the weight of old model estimates by tuning a fixed learning rate.
In contrast, Florez-Larrahondo et al. [36] proposed using the predictive state density6 (10) as a better approximation of

the fixed-interval smoothing. The model parameters are recursively updated using an adaptation of Stenger’s recursion
formulas for discrete HMMs. The transition update is the same as (38) with ctjs replaced by ct+1js, while the state output is
given by:
bT
j ðkÞ ¼

Pt�1
s¼1ctþ1jsðjÞPt
s¼1ctþ1jsðjÞ

bT�1
j ðkÞ þ

ctþ1jtðjÞdðoT ;vkÞPt
s¼1ctþ1jsðjÞ

ð39Þ
In HMM-based intrusion detection application, the author argued that there is no need for exponential forgetting factors, and
proposed delaying the first parameters update, until some time t > 0, to stabilize the re-estimation.

3.2.2. Numerical optimization methods
Similar to batch learning of HMM parameters described in Section 3.2.2, standard numerical optimization methods can be

applied for on-line learning to directly optimize the log-likelihood function and its derivatives. The gradient of the log-like-
lihood can be computed using the state conditional densities obtained from each block of training data (instead of the entire
batch of data) or by using a recursive computation of the gradient itself as described next.

Block-wise Based on the GD of the negative likelihood (24), Baldi and Chauvin [4] have introduced a block-wise algorithm
for estimation of discrete HMM parameters, which related to the Generalized EM (GEM). By using the soft-max parametri-
zation, (30), and the FF-BS algorithm, parameters are updated after each sequence as follows:
uðkþ1Þ
ij ¼ uðkÞij þ g

XT

t¼1

ðntjTði; jÞ � aijctjTðiÞÞ

v ðkþ1Þ
j ðmÞ ¼ v ðkÞj ðmÞ þ g

XT

t¼1

ðctjTðjÞdot m � bjðmÞctjTðjÞÞ
This is typically referred to as stochastic gradient-based techniques [12].
Based on the recursive maximum likelihood estimation of LeGland and Mevel [64,65], Cappe et al. [16] proposed a quasi-

Newton (27) faster convergent technique for maximizing the likelihood of a continuous HMM with Gaussian output (1).
Using the parametrization on a simplex (31) and replacing the standard deviation by its log (to ensure its positivity), the
gradient of the log-likelihood (13), can be computed recursively using:
rk‘TðkðkÞÞ ¼
XT

t¼1

1
ct

XN

i¼1

ctjt�1ðiÞrkðk�1ÞbiðotÞ þ biðotÞrkðk�1Þctjt�1ðiÞ
h i

ð40Þ
where ct ¼
PN

k¼1bkðotÞctjt�1ðkÞ is a normalization factor. The gradient of the predictive density is also computed recursively,
with reference to the model parameters, using:
@ctþ1jtðjÞ
@aij

¼ 1
ct

XN

i¼1

ðaij � ctþ1jtðjÞÞ
@ctjt�1ðiÞ
@aij

þ ctjt�1ðiÞ
� �

rkb
ctþ1jtðjÞ ¼

1
ct

XN

i¼1

ðaij � ctþ1jtðjÞÞ½ctjt�1ðiÞrkb
biðotÞ þ biðotÞrkb

ctjt�1ðiÞ�
and the gradient of the Gaussian output density (1), w.r.t. the mean and the standard deviation, is given by
s is equivalent to setting btðiÞ ¼
PN

j¼1aijbjðotþ1Þ in the FB algorithm.
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rkb
biðotÞ ¼

@biðotÞ
@li

;
@biðotÞ
@ri

� �0
¼ ðot � liÞ

r2
i

biðotÞ;
1
ri

ðot � liÞ
ri


 �2

� 1

 !
biðotÞ

" #0
ð41Þ
3.2.3. Recursive Maximum Likelihood Estimation (RMLE)
The general recursive estimator for the parameters of a stochastic process is of the form [72,9]:
ktþ1 ¼ kt þ gtHðotþ1; ktÞ�1hðotþ1; ktÞ ð42Þ
where gt is a sequence of small gains (constant or decreasing with t), H(ot+1,kt)�1 an adaptive matrix, and h(ot+1,kt) is a score
function. Both the adaptive matrix, H, and the score function, h, determine the update of the parameter kt as a function of
new observations. The goal of the recursive procedures is to find the roots of a regression function given the true parameters
k0: limt?1E{H(ot+1,kt)�1h(ot+1, kt)jk0}.

In the general case of incomplete data, the score is equal to the gradient of the log-likelihood function h =rklog P(ot+1jk).
The adaptive matrix is equal to the incomplete data observed information matrix H ¼ r2

k log Pðo1:tþ1jkÞ, which ideally must
be taken as the incomplete data Fisher information matrix H = Ek[h(ot+1jk)h0(ot+1jk)]. However, for the incomplete data mod-
els an explicit form of the incomplete data Fisher information matrix is rarely available. Titterington [92, Eq. 9] proposed
using the complete data Fisher information matrix instead H ¼ E½�r2

kt
log Pðot; qtjkÞ�. He showed that it is easy to compute

and invert H because it is always block-diagonal with respect to latent data and model parameters. For several independent
and identically distributed (i.i.d.) incomplete data models, this recursion is proven to be consistent and asymptotically nor-
mal [92]:
ktþ1 ¼ kt þ
1

t þ 1
ðE½�r2

kt
log Pðot; qt jkÞ�Þ

�1rkt log Pðotþ1jktÞ ð43Þ
This recursive learning algorithm is related to on-line estimation of parameters using EM. It was also related to an EM iter-
ation since it uses a recursive version of (19).

The efficiency and convergence is an issue with Titterington’s recursion [84,96]. In fact, for HMMs, the score function
must consider the previous observations:
hðotþ1jkÞ ¼ rk log Pðotþ1jo1:t ; kÞ ð44Þ
Another recursion relies on the relative entropy (34) as objective function, is proposed by Weinstein et al. [98, Eq. 4]:
k̂tþ1 ¼ k̂t þ gthðotþ1jk̂tÞ ð45Þ
where the gain gt satisfies:
lim
t!1

gt ¼ 0;
X1
t¼1

gt ¼ 1;
X1
t¼1

g2
t 61 ð46Þ
It was suggested that h may be calculated from the complete data using
hðotþ1jk̂tÞ ¼ Ekfr log Pðotþ1; qtþ1jkÞjotþ1g
and is shown to be consistent in the strong sense and in the mean-square sense for stationary ergodic processes that satisfy
some regularity conditions. However, some of these conditions do not hold for HMM [83,84].

Block-wise Ryden [83,84] considered using successive blocks of m observations taken from data stream,
on = {o(n�1)m+1, . . . ,onm}, as independent of each other, while the Markov dependence is only maintained within the observa-
tions of each block. This assumption reduces the extraction of information from all the previous observations to a data-seg-
ment of length m. Although it gives an approximation of the MLE – a less efficient maximum pseudo-likelihood – the
presented technique is easier to apply in practice. Using a projection PG on the simplex (32), M�, for some � > 0, at each iter-
ation, the recursion is given (without matrix inversion)
k̂nþ1 ¼ PGðk̂n þ gnhðonþ1jk̂nÞÞ ð47Þ
where hðonþ1jk̂nÞ ¼ rkn log Pðonþ1jknÞ and gn = g0n�q for some positive constant g0 and q 2 1
2 ;1

�
. It was shown to converge

almost surely to the set of Kuhn-Tucker points for minimizing the relative entropy KLm(k0kk) defined in (34), which attains its
global minimum at k̂n ! k0 provided that the HMM is identifiable [66,82], hence the requirement m P 2.

Symbol-wise Holst and Lindgren [45, Eq. 16] proposed a similar recursion to (43) for estimating the parameter of an HMM
however. They used the conditional expectation over (qt�1,qt) given o1:t, which can be efficiently calculated using a forward
recursion. It is guided by
H�1
t ¼

1
t

Xt

s¼1

hðot jk̂t�1Þh0ðot jk̂t�1Þ
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which is different from the score function (44). The adaptive matrix is suggested by an empirical estimate to the incomplete
data information matrix given by
H�1
t ¼

1
t

Xt

s¼1

hðot jk̂t�1Þh0ðotjk̂t�1Þ
which can be computed recursively without matrix inversion using:
Ht ¼
t

t � 1
Ht�1 �

Ht�1hth
0
tHt�1

t � 1þ h0tHt�1ht

 !

Ryden [83] argued that the recursion of Holst and Lindgren aims at local minimization of the relative entropy rate (34) be-
tween k0 and k̂t . Moreover, he showed that if k̂tþ1 ! k0, then

ffiffi
t
p
ðk̂tþ1 � k0Þ is asymptotically normal with zero mean and

covariance matrix given by the inverse of this expectation limt?1E{h(ot+1, k0)h0(ot+1,k0)}.
Slingsby [88] and Krishnamurthy and Moore [56] derived an on-line algorithm for HMMs based on the recursive version

of the EM (43) proposed in [92,98], for digital signal processing and telecommunication applications. The algorithm follows a
two-step procedure, similar to EM, as each observation symbol arrives:

E-step: Recursively computes the complete data likelihood
Qtþ1ðk; ktÞ ¼ Ek½log Pðotþ1; qtþ1jkÞjo1:tþ1; kt � ¼
Xtþ1

s¼1

Qsðk; ktÞ ð48Þ
M-step: Estimates ktþ1 ¼ arg maxkQtþ1ðKt ; kÞ

where Qsðk; ktÞ is defined in (19). The model is updated using:
ktþ1 ¼ kt þ ½r2
kt
Qtþ1ðk; ktÞ��1rktQtþ1ðk; ktÞ
Since each term of (48) depends on only one of the model parameters,r2
kt
Qtþ1ðk; ktÞ is a block diagonal matrix for each of the

model parameters. A projection into the constraint domain along with the application of smoothing (fixed-lag or more con-
veniently sawtooth-lag) and forgetting show, through empirical experiments, a convergence to the correct model.

Slingsby [88] presented the parameters update for a discrete HMM using a projection on a simplex (31):
aðtþ1Þ
ij ¼ aðtÞij þ

1

dðiÞj

gðiÞj �
PN

h¼1gðiÞh =dðiÞhPN
h¼11=dðiÞh

 !
ð49Þ
where
dðiÞj ¼
Ptþ1

s¼1nsði; jÞ
â2

ij

; gðiÞj ¼
ntþ1ði; jÞ

âij
ð50Þ

bðtþ1Þ
j ðkÞ ¼ bðtÞj ðkÞ � bjðotþ1Þ

ctþ1ðjÞPtþ1
s¼1csðjÞdðotþ1; kÞ

 ! bjðkÞ2Ptþ1

s¼1
csðjÞdðotþ1 ;kÞPM

p¼1
bjðpÞ2Ptþ1

s¼1
csðjÞdðotþ1 ;pÞ


 �
0BBB@

1CCCA; k – otþ1

bðtþ1Þ
j ðkÞ ¼ 1�

XM

p–k

bðtÞj ðpÞ; k ¼ otþ1
Krishnamurthy and Moore [56] focused on continuous HMM with Gaussian output (1). The state transitions update is the
same as (50) and (49), and the state output update is given by:
lðtþ1Þ
i ¼ lðtÞi þ

ctþ1ðiÞðotþ1 � lðtÞi ÞPtþ1
s¼1csjtþ1ðiÞ

r2
w

	 
ðtþ1Þ ¼ Rðtþ1Þ
w ¼ RðtÞw þ

PN
i¼1ctþ1ðiÞ otþ1 � lðtÞi

� �2
� RðtÞw

t þ 1
Since the positiveness of parameters is not maintained with the simplex parametrization, the projection on a sphere (33)
may provide a better alternative [25]:
dðiÞj ¼
Xtþ1

s¼1

2nsði; jÞ
s2

ij

þ 2ctþ1ðiÞ
" #

; gðiÞj ¼
2ntþ1ði; jÞ

sij
� 2ctþ1ðiÞsij;
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from which the transition parameters update is given by
sðtþ1Þ
ij ¼ sðtÞij þ

gðiÞj

dðiÞj

; aij ¼ s2
ij
LeGland and Mevel [64,65] suggested and proved the convergence and the asymptotic normality of the RMLE (and the
RCLSE described in the next section) without any stationary assumption, using the geometric ergodicity and the exponential
forgetting of their prediction filter and its gradient. This approach is based on the observation that the log likelihood can be
expressed as an additive function of an extended Markov chain, i.e., as sum of terms depending on the observations and the
state predictive filter (10):
‘sðkÞ ¼
Xs

t¼1

log
XN

i¼1

biðotÞctjt�1ðiÞ
Taking the gradient of the log-likelihood increment gives the score: (as a function of the extended Markov chain
Zt = F(ot,ctjt�1,wt))
hðZt jkÞ ¼ rk‘sðkÞ ¼
1
ct

XN

i¼1

ctjt�1ðiÞrkbiðotÞ þ biðotÞwi
t

h i

where ct ¼

PN
k¼1bkðotÞctjt�1ðkÞ is a normalization factor, and wi

t ¼ rkctjt�1ðiÞ is the gradient of the state prediction filter, which
can be also computed recursively using:
wi
tþ1 ¼ R1ðot; ctjt�1; kÞwi

t þ Ri
2ðot; ctjt�1; kÞ ð51Þ
where
R1ðot ; ctjt�1; kÞ ¼
XN

i¼1

XN

j¼1

aij 1�
ctjt�1ðiÞ

PN
k¼1bkðotÞ

ct

" #
biðotÞ

ct

Ri
2ðot ; ctjt�1; kÞ ¼

XN

j¼1

aij 1�
biðotÞ

PN
k¼1ctjt�1ðkÞ
ct

" #
ctjt�1ðiÞ

ct
rkbiðotÞ þ

ctjt�1ðiÞbiðotÞ
ct

XN

j¼1

rkaij
The parameters update is then done for each row i using:
k̂i
tþ1 ¼ P� k̂i

t þ gtþ1hðZi
tjkÞ

� �

where, gt ¼ 1

t , and P� is the projection on the simplex (32), D�, for some � > 0.
The update can be decoupled into transition and state output probabilities where R1 does not change. For transition prob-

abilities, rkbi(ot) are zeros, accordingly h and R2 reduces to:
hðZtjkÞ ¼
1
ct

XN

i¼1

biðotÞwtðiÞ

Ri
2ðot ; ctjt�1; kÞ ¼

ctjt�1ðiÞbiðotÞ
ct

XN

j¼1

rkaij
where, rkaij = 1 at position i, j and zero otherwise. For discrete state outputs,
hðZtjkÞ ¼

1
ct

PN
i¼1

ctjt�1ðiÞrkbiðotÞ þ biðotÞwi
t

h i
; if ot ¼ vk

1
ct

PN
i¼1

biðotÞwi
t

	 

; if ot – vk

8>>><>>>:

Ri
2ðot ; ctjt�1; kÞ ¼

PN
j¼1

aij 1� biðotÞ
PN

k¼1
ctjt�1ðkÞ

ct

� �
ctjt�1ðiÞ

ct
rkbiðotÞ; if ot ¼ vk

0 if ot – vk

8><>:

For the Gaussian state outputs (1):
hðZtjkÞ ¼
1
ct

XN

i¼1

ctjt�1ðiÞrkb
biðotÞ þ biðotÞwi

t

h i
Ri

2ðot ; ctjt�1; kÞ ¼
XN

j¼1

aij 1�
biðotÞ

PN
k¼1ctjt�1ðkÞ
ct

" #
ctjt�1ðiÞ

ct
rkb

biðotÞ
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where rkb
biðotÞ is given by (41).

Collings and Ryden [24] proposed a similar RMLE approach, for continuous HMM with Gaussian output (1). The difference
consists of using the sphere parametrization (33), instead of the simplex used in [64,65]. The gradient of the transition prob-
abilities and the recursive computation of the gradient of the state predictive density should be now taken w.r.t. the pro-
jected parameters sij aij ¼ s2

ij

� �
. Although for different purpose, these derivations are very similar to (52) and (53)

presented next.

3.3. Minimum Prediction Error (MPE)

Minimizing the output or state prediction errors provides alternate objective functions, which have been proposed in
application of HMMs to signal processing. It consists of measuring the error of HMM output prediction [25,65] or of
HMM filtered state [38,37], and then providing an updated estimate of HMM parameters with each new observation symbol.

Recursive Prediction Error (RPE) is first proposed for continuous range Gauss-Markov process [71], and for a general
recursive stochastic gradient algorithm [2]. RPE extends the concept of least squares from linear to non-linear functions.
It locates the locale minimum of the prediction error cost function J(k) and provides an updated estimate of the model with
each new observation. It is formulated by considering the minimum variance of the prediction error based on the best model
estimate at the time
k̂ ¼ arg min
k

JðkÞ ¼ 1
2

E½ot � ôt�2
� �
where ôt is the output prediction. The expectation of the off-line minimum variance, for an observation sequence of length T,
is approximated by its time average:
JTðkÞ ¼
1

2T

XT

t¼1

½ot � ôt �2
which is commonly minimized with the Gauss-Newton method – a simplified Newton method specialized to the non-linear
least square problem – where each pass k through the data the model is updated using:
k̂ðkþ1Þ ¼ k̂ðkÞ � gt
1
T

XT

t¼1

wkðkÞw
0
kðkÞ

" #�1
1
T

XT

t¼1

wkðkÞekðkÞ

" #

where wkðkÞ ¼ rkðkÞ JTðkÞ and ekðkÞ ¼ ot � ôt . An on-line version of the Gauss-Newton method is also possible if the gradient, and
the inverse of the empirical information matrix, can be built up recursively, at each time instant, as new observation arrive. A
general practical implementation is given by Ljung and Soderstrom [72].

Collings et al. [25] extended the RPE for continuous HMM where model variances are assumed. The model is updated at
each time step using:
k̂tþ1 ¼ Ps k̂t þ gtþ1R�1
tþ1w

0
tþ1Etþ1

� �

where gt is a gain sequence satisfying (46) and Rt is the adaptive matrix which is computed by:
Rtþ1 ¼ Rt þ gtþ1ðwtþ1w
0
tþ1 � RtÞ
or alternatively, to avoid the matrix inversion, R�1
t could be computed as
R�1
tþ1 ¼

1
1� gtþ1

R�1
t �

gtþ1R�1
t wtþ1w

0
tþ1R�1

t

ð1� gtþ1Þ þ gtþ1w
0
tþ1R�1

t wtþ1

 !

However, now for the HMM case, the output error is given by
Et ¼ ot � ôtjt�1
where, the output prediction, ôtjt�1 ¼ E½ot jo1:t�1; kt �, is conditioned on previous values and given by (using the unnormalized
state variable at(i) (15), of the Forward-Backward algorithm)
ôtjt�1 ¼
PN

i¼1

PN
j¼1aijat�1ðiÞbjðotÞPN

i¼1at�1ðiÞ
In addition, a projection on the sphere, Ps, is made at each time step to ensure model constrains (33). Accordingly, the gra-
dient of the output error is given by:
wt ¼ ½�rkêt�0 ¼ ½rlj
ôtjt�1;rsij

ôtjt�1�0
which can be also computed recursively:
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rlj
ôtþ1jt ¼

PN
i¼1aijatðiÞ þ

PN
i¼1aij1tðiÞbjðotÞPN

i¼1at�1ðiÞ
�
PN

i¼1aijatðiÞ1tðiÞbjðotÞPN
i¼1a2

t�1ðiÞ

rsij
ôtþ1jt ¼

2
PN

i¼1sijatðiÞ lj �
PN

i¼1

PN
j¼1s2

ijbjðotÞ
� �

þ
PN

i¼1aijftði; jÞbjðotÞPN
i¼1a2

t�1ðiÞ
ð52Þ

�
PN

i¼1aijatðiÞftði; jÞbjðotÞPN
i¼1a2

t�1ðiÞ
where 1tðjÞ ¼ rlj
atðjÞ and ftðj;m;nÞ ¼ rsij

atðjÞ are given by the following recursions:
1tþ1ðjÞ ¼
XN

i¼1

aij1tðjÞbjðotþ1Þ þ
otþ1 � bjðotÞ

r2
w

XN

i¼1

aijatðiÞbjðotþ1Þ

ftþ1ði; jÞ ¼
XN

i¼1

aijftði; jÞbjðotþ1Þ � 2sijatðiÞ
XN

j¼1

bjðotþ1Þs2
ij þ 2atðiÞsijbjðotþ1Þ ð53Þ
The authors studied the convergence properties of the algorithm empirically. A convergence problem for this algorithm has
been observed for small error variances (low noise condition), cf. [24, Section 5] and [37, Section 3-C].

Ford and Moore [38] proposed an ELS and RPE schemes that exploit the filtered state estimates, however for cases where
the transition probabilities are assumed known. These schemes have been later extended to the recursive state prediction
error (RSPE) algorithm [37], where the state transition probabilities are now estimated from the data. Local convergence
analysis for RSPE is presented using the ordinary differential equation (ODE) approach developed for RPE methods. The
objective function is given (as a function of the filtered state error) by:
k̂ ¼ arg min
k

JtðkÞ ¼
1
2

Xs

t¼1

ctjtðiÞ �
XN

i¼1

ct�1jt�1ðiÞaij

" #2
8<:

9=;

and the model is updated, for each row i, using:
k̂i
t ¼ k̂i

t�1 þ Hi
t

h i�1
wi

t

Hi
t

h i�1
¼ Hi

t�1

h i�1
þ ct�1jt�1ðiÞ
where H�1
t is an approximation to the second derivative of wt, and
wi
t ¼

@JtðkÞ
@aij
can be computed recursively, in a way similar to (51).
In addition to the RMLE described in the previous section, LeGland and Mevel [65] proved the convergence of the recur-

sive conditioned least squares estimator (RCLSE), which is a generalization of the RPE approach [25]. A similar objective func-
tion is used:
JsðkÞ ¼
1

2s
Xs

t¼1

½ot � ôtjt�1;k�2;
where the output prediction given by
ôtjt�1 ¼
XN

j¼1

bjðotÞctjt�1ðjÞ
is based on the state predictive density. Accordingly, its gradients (wi
t) can be computed recursively using (51). The model

update for transition probabilities is given, for each row i, by
k̂i
tþ1 ¼ P� k̂i

t þ gtþ1 li ot �
XN

j¼1

ljctjt�1ðjÞ
 !" #

wi
t

 !
;

and for the continuous state outputs by
k̂i
tþ1 ¼ P� k̂i

t þ gtþ1

XN

i¼1

li ot �
XN

j¼1

ljctjt�1ðjÞ
 !" #

wi
t þ
XN

i¼1

rili ot �
XN

j¼1

ljctjt�1ðjÞ
 !" #

ctjt�1ðiÞ
 ! !
As for the discrete state outputs, the algorithm is only applicable for finite alphabet. In this case, the same formulas apply,
however with li ¼

PT
t¼1otbiðotÞ and of course using the gradient recursion (51) for the discrete case.
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4. An analysis of the on-line learning algorithms

Algorithms for on-line learning of HMM parameters are mostly designed to learn observations from a source generating
an infinite amount of data. For instance, these algorithms can be employed to re-estimate HMM parameters from a large
number of sub-sequences (e.g., speech sentences), or a stream of symbols (e.g., signal in a noisy communication channel).
Block-wise techniques re-estimate HMM parameters after observing each new sub-sequence, while symbol-wise techniques
re-estimate HMM parameters upon observing each new symbol (Fig. 5a). The objective is to optimize HMM parameters to fit
the generating source of data through one observation of the data. In contrast, batch learning algorithms re-estimate HMM
parameters upon observing all accumulated sequences or blocks of sub-sequences of observations (Fig. 5b). Batch learning
algorithms optimize HMM parameters to fit the accumulated data over several iterations.

On-line learning is challenging since algorithms must converge rapidly to the true model with minimum resource
requirements. It is assumed that the true generative model resides within the HMM parameters space. Finding recursive for-
mulas to update the HMM parameter is necessary for on-line learning but not sufficient. Statistical properties such as con-
sistency and asymptotic normality must be proven to ensure the convergence of an on-line learning algorithm. This section
provides an analysis of the convergence properties and of the computational complexity of the on-line algorithms presented
in Section 3.

4.1. Convergence properties

The extension of the batch EM to an incremental EM version, using a partial E-step followed by a direct update of HMM
parameters in the M-step, is a well known technique that overcomes the resource requirements when processing a large
fixed-size data set [44]. Neal and Hinton [75] showed that this EM variant provides non-increasing divergence, and that local
minima in divergence are local maxima in the likelihood function. However, as argued by Gunawardana and Byrne [43], this
is insufficient to conclude that it converges to local maxima in the likelihood function. They showed that this incremental EM
variant is not in fact an EM procedure and hence the standard GEM convergence properties [99] do not apply. Indeed their E-
step is modified to use summary statistics from the posterior distributions of previous estimates. By using the Generalized
Alternating Minimization (GAM) procedure in an information geometric framework, Gunawardana and Byrne [43] proved
that the incremental EM converges to stationary points in likelihood, although not monotonically.

The authors could find no proof of convergence for on-line EM-based algorithms when HMM parameters estimation is
performed from infinite amount of data, for both block-wise [28,73] and symbol-wise [91,89,36,74,?] techniques. Further-
more, statistical analysis such as consistency and asymptotic normality are not provided. Although the rate of convergence
is not studied analytically, applying stochastic techniques in literature such as averaging [78] has been shown to help im-
prove convergence properties [15]. Among the block-wise algorithms, the gradient-based algorithm proposed by Cappe
et al. [16] should achieve the fastest convergence rate since it is based on a quasi-Newton method (second order approxi-
mation), while others should have a slower convergence rate. Similarly, for the recursive EM symbol-wise algorithms
[56,88] since the complete likelihood is optimized by a second order method, although no proof of convergence is provided.

Among the methods based on RMLE, Ryden [83,84] provided convergence analysis for his block-wise RMLE. He proved the
consistency by using the classical result of Kushner and Clark [60]. Independently, LeGland and Mevel [64,65] proved the
convergence and asymptotic normality of their symbol-wise RMLE, under the assumption that the transition probability
matrix is primitive, yet without any stationary assumption. This is accomplished by using the geometric ergodicity and
the exponential forgetting of the predictive filter and its gradient. Krishnamurthy and Yin [57] extended the RMLE results
of LeGland and Mevel [65] to auto-regressive models with Markov regime, and added results on convergence, rate of
Fig. 5. An illustration of on-line learning (a) from an infinite stream of observation symbols (oi) or sub-sequences (si) versus batch learning (b) from two
accumulated sequences of observations symbols (S1 [ S2) or blocks of sub-sequences (D1 [ D2).
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convergence, model averaging, and parameter tracking. In particular, they showed that the above assumption can be relaxed
to the condition in which the transition probability matrix is aperiodic and irreducible. The authors also suggested using the
iterate averaging [78], as well as observation averaging for faster convergence and lower variance.

RPE based techniques were first extended and applied for recursive estimation of HMM parameters due to their quadratic
convergence rate (although it is asymptotically sub-optimal). This convergence speed comes at the expenses of an increased
complexity, and as discovered later, the RPE algorithm proposed by Collings et al. [25] suffers from numerical issues. Local
convergence analysis is only shown for the RSPE [38] using the ordinary differential equation. Finally, similar to the RMLE,
LeGland and Mevel [65] also proved the convergence of the RCLSE.

4.2. Time and memory complexity

The time complexity of an algorithm, can be analytically defined as the sum of the worst-case running time T p for each
operation p required to re-estimate HMM parameters based on new training sequence (block-wise) or new observation
(symbol-wise):
T ¼
X

p

T p ¼
X

p

tpnp
where tp is the constant time needed to execute an operation p (e.g., multiplication, division, etc.), and np is the number of
times this operation is executed. The growth rate is then obtained by making the key parameters (T and N) of the worst-case
time complexity tend to 1. For simplicity, only most expensive operations are considered – multiplication, division, and
exponent. Time complexity is independent from the convergence time, which varies among different algorithmsas discussed
in Section 4.1. Memory complexity is estimated as the number of 32 bit registers needed during learning process to store
temporary variables. The worst-case memory required for estimation of sufficient statistics such as conditional distributions
of states and gradients of the log-likelihood is considered.

Tables 1 and 2 present a breakdown of time and memory complexity for some representative algorithms. Table 1 com-
pares the complexity of block-wise algorithms applied to on-line learning of an observation sequence o1:T of length T and
then re-estimating HMM parameters. Block-wise techniques typically employ a fixed-lag smoothing approach for estimating
HMM states upon receiving each sub-sequence. In general, all these algorithms have the same time complexity, OðN2TÞ.
However, EM-based block-wise techniques [28,73] are easier to implement than gradient-based [4,86,16] and RMLE
[83,84] techniques. EM-based techniques maintain the parameters constraints (2) and (3) implicitly, and do not employ
derivatives and projections of gradient filters. Accordingly, they require fewer computations to update the HMM parameters
upon receiving an observation symbol (see Table 1). Although, block-wise algorithms have the same memory complexity of
OðNTÞ, the memory requirements of the algorithm proposed by Cappe et al. [16] is independent of the sequence length T.
This is due to the recursion on the gradient itself and could be useful when T is large. However, it requires additional time
complexity due to its line search technique.

Table 2 compares the complexity of symbol-wise algorithms for on-line learning from a stream of observation symbols ot.
The time complexity is based on the learning of one observation. Therefore, it must be multiplied by the length, T, of a finite
observation sequence for comparison with block-wise techniques. Algorithms that requires more than N2 computational
complexity per time step may become less attractive when the number of HMM states N is large. As for block-wise tech-
niques, EM-based symbol-wise filtering and prediction techniques [89,36] are generally easier to implement than gradi-
ent-based [64,65,24,41] and minimum prediction error [25,38,37] techniques. On the other hand, although EM-based
smoothing techniques [91,74,15] have been shown to provide more accurate states estimate than filtering and prediction
[1], their time complexity per observation is OðN4Þ, which makes them less attractive when the number of HMM states N
is large. In general the memory requirement of symbol-wise techniques is independent of T, since the HMM re-estimation
is either based the current symbol (filtering) or on small finite predictions – one symbol look-ahead or a larger fixed-lag
smoothing.

Block-wise algorithms typically require fewer computations than symbol-wise algorithms when learning from a large
observation sequence, at the expenses of an increased memory requirements. This is mainly due to fewer update of HMM
parameters that is required with block-wise learning algorithms. Fig. 6 illustrates the time and memory complexity required
by the EM-based symbol-wise prediction algorithm proposed by Florez-Larrahondo et al. [36] versus its block-wise fixed-lag
smoothing counterpart proposed by Mizuno et al. [73], when learning an observation sequence of length T = 1000,000 sym-
bols, with an output alphabet of size M = 50 symbols. While symbol-wise algorithms can be directly employed to learn such
sequence of observations, block-wise algorithms require segmenting the sequence into non-overlapping sub-sequences
using a sliding window of size W, which is also the fixed-lag value.

As shown in Fig. 6a–c, block-wise algorithms are more time efficient with smaller number of states N and smaller window
sizes W. While symbol-wise algorithms require T updates of HMM parameters, block-wise algorithms require about T

W up-
dates when learning the same observation sequence. When the N value increases the computational time of block-wise algo-
rithms may approach that of symbol-wise for large window sizes. In such cases, the computational time of parameters
update is dominated by that of state densities which scales quadratically with N and linearly with W. Therefore, for a given
N value, smaller window sizes should be favored since they reduce the time complexity for block-wise learning from a large
observation sequence. Memory complexity also increases linearly with the window size as shown in Fig. 6d. Increasing the



Table 1
Time and memory complexity for some representative block-wise algorithms used for on-line learning of a new sub-sequence o1:T of length T. N is the number
of HMM states and M is the size of alphabet symbols.

Algorithms Step # Multiplications # Divisions # Exp Memory

Baldi and Chauvin [4] c and n 6N2T + 3NT � 6N2 � N N2T + 3NT � N2 � N NT + N2 + 2N
A 2N2 N2 N2 2N2

B 2NM MN NM 2NM

Total 6N2T þ 3NT � 4N2

þ2NM � N
N2T + 3NT + MN � N N2 + NM NT + 3N2 + 2NM + 2N

Cappe et al. [16],
quasi-Newton based

r‘ and ct 5N2T + 2NT 3N2T + NT N(N2 + NM)

A 2N2 N2 2N2

B 2N N 2N

Total 5N2T þ 2NT þ 2N2

þ2N
4N2T þ NT þ 2N

þN
2N3 + 2N2

Mizuno et al. [73] c and n 6N2T + 3 NT � 6N2 � N N2T + 3NT � N2 � N NT + N2 + 2N
A N2 N2 N2

B NM NM NM

Total 6N2T þ 3NT � 5N2

þNM � N
N2T þ 3NT
þNM � N

NT + 2N2 + NM + 2N

Table 2
Time and memory complexity of some representative symbol-wise algorithms used for on-line learning of new symbol oi. N is the number of HMM states and M
is the size of alphabet symbols.

Algorithms Step # Multiplications # Divisions Memory

Stiller and Radons [91],
smoothing-based approach

nt
ijkðotÞ N4 + N2 2N3 2N3M

A = {aij(ot)} – N2M N2M

Total N4 + N2 2N3 + N2M 2N3M + N2M

Florez-Larrahondo et al. [36],
prediction-based approach

c and n 5N2 + N N2 + N N2 + 3N

A N2 2N2 N2

B NM 2NM NM

Total 6N2 + NM + N 3N2 + 2NM + N 2N2 + NM + 3N

Slingsby [87] d, g, c 6N2 + N 2N2 + N 2N2 + N
A N2 N2 + 2N N2

B NM + 3N NM + 2N NM

Total 7N2 + NM + 4N 3N2 + NM + 5N 3N2 + NM + N

Legland and Mevel [64] R1 and R2 N3 + N2M N2 + NM N2 + NM + 4N
A N2 2N2 N2

B NM 2NM NM

Total N3 + N2(M + 1) + NM 3N2 + 3NM 2N2 + 2NM + 4N

Collings et al. [25] R�1
t ;wt ; Et N4 + 4N3 + N3 + 5N2 + 5M2 + 3NM 3N2 + M2 + M N2 + NM + 2N

A – (only N2 additions) – N2

B – (only NM additions) – NM

Total N4 + 4N3 + N3 + 5N2 + 5M2 + 3NM 3N2 + M2 + M 2N2 + 2NM + 4N
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fixed-lag value W may yield a more accurate local estimate of HMM states, and hence improves algorithms stability. If mem-
ory constraints are an issue, block-wise techniques that employ recursions on the gradient itself [16] should be favored since
their memory complexity are independent of W. When the application imposes stricter constraints on the memory space,
symbol-wise algorithms should be employed. The strategy for selecting a value for W is thereby an additional issue to ad-
dress with block-wise techniques.
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Fig. 6. An example of the time and memory complexity of a block-wise [73] vs. symbol-wise [36] algorithm for learning an observation sequence of length
T = 1000,000 with an output alphabet of size M = 50 symbols.
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5. Guidelines for incremental learning of HMM parameters

The target application implies a scenario for data organization and learning. Depending on the application, incremental
learning may be performed on an abundant or limited amount of new data. In addition, this data may be organized into a
block of observation sub-sequences or into one long observation sequence. Within the incremental learning scenario
(Fig. 1), HMM parameters should be re-estimated from newly-acquired training data. However, the corruption of previously
acquired knowledge remains a key issue. In fact, none of the algorithms described in Section 4 can fully overcome this issue
during incremental learning. Several factors such as the choice of the learning rate and sub-sequence length may help
alleviating this issue, by optimizing HMM parameters such that contributions of new data and pre-existing knowledge is
balanced. In contrast, ensemble of classifiers trained independently on new training data and combined with previously-
trained classifiers may provide an alternate solution [47,53]. The rest of this section provides guidelines and underscores
challenges faced when applying on-line techniques to supervised incremental learning of new training data, when the data
is either abundant or limited.
5.1. Abundant data scenario

Under the abundant data scenario, it is assumed that a long sequence of training observations becomes available to up-
date HMM parameters through incremental learning. A more complete view of phenomena is therefore presented to the
learning algorithm. As stated previously, symbol-wise algorithms can be directly employed to learn such sequences, one
observation at a time, while block-wise algorithms require buffering some amount of data using for instance a sliding win-
dow according to a user-defined buffer size W.

When learning is performed in a static environment from a large sequence of observations, one view of the data is typ-
ically sufficient to capture the underlying structure by exploiting patterns redundancy. This is because the abundant data
provide a more complete view of phenomena. Resource constraints would be another reason behind restricting the iterative



Fig. 7. The dotted curve represents the log-likelihood function associated with an HMM (k1) trained on block D1 over the space of one model parameter k.
After training on D1, the on-line algorithm estimates k = k1 (point (a)) and provides HMM (k1). The plain curve represents the log-likelihood function
associated with HMM (k2) trained on block D2 over the same optimization space.
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learning procedure to one pass. Therefore, the convergence properties of an on-line algorithm must be known to determine
the speed and limits of convergence behavior. As described in Section 4.1, when the true model is contained in the set of
solutions, some algorithms are shown to be consistent and asymptotically normal by properly choosing a monotonically
decreasing learning rate gt and by applying Polyak-Ruppert averaging [78]. For on-line learning in static environment,
decreasing step-sizes are essential conditions of convergence. Fixed step-sizes may yield the convergence of algorithms to
oscillate around their limiting values with variances proportional to the step-size. However, some novelty criteria on the
new data should be employed to reset the monotonically decreased learning rate when provided with a new sequence of
observations.

In contrast, when learning is performed in dynamically-changing environments, the notion of optimality is no longer va-
lid because the on-line algorithm should forget past knowledge and adapt to the newly acquired information. Detecting
slow, systematic or abrupt changes would require specialized novelty detection strategies [59], and this remains an open
issue that is outside the scope of this paper. Tracking non-stationary environments and handling slow drift is typically
achieved by choosing a fixed learning rate g. For abrupt drift however, a data driven learning rate is required to detect
changes and adapt the step-sizes according to the incoming data [85,90].

In both static and dynamically-changing environments, algorithms with low time and memory complexity are favored to
learn the long sequence of observations. As discussed in Section 4.2, symbol-wise algorithms that requires more than N2 time
complexity upon receiving each symbol are less attractive, especially when the number of HMM states N is large. For block-
wise algorithms, smaller window sizes W are favored for reducing both time and memory complexity. However, the stability
of algorithms must also be considered when selecting the window size.

Some issues that require further investigation when adapting the HMM parameters from abundant data. Empirical
benchmarking studies of these techniques could offer further insight on trade-offs for selecting algorithms and user-defined
parameters for an application domain. For instance, the performance of techniques based on MLE (such as EM and gradient
based) should be compared to those based on MMD, and recursive techniques for MPE. An interesting comparison would also
involve symbol-wise versus block-wise and filtering versus fixed-lag smoothing. Significant improvement, accuracy, speed
and stability of convergence, computing resources, and amount of training data required to reach or maintain a given level of
performance should be among the evaluation criteria. To this end, it is recommended to conduct non-parametric tests for
statistical comparisons of multiple classifiers over multiple data sets [27,40]. In addition to assessing the strength and weak-
ness of each algorithm, such comparison may lead to efficient hybrid on-line algorithms that require fewer resources (see
Section 2.2.3).

5.2. Limited data scenario

Under the limited data scenario, it is assumed that a short sequence of observations becomes available to update the
HMM parameters, providing therefore a limited view of phenomena. For block-wise algorithms the sequence is typically seg-
mented into shorter sub-sequences using a sliding window with a user-defined window size W. In contrast to the abundant
data case, when provided with limited data, several iterations over the new sequence or block of observations are required to
re-estimate HMM parameters. This local optimization raises additional challenges. Specialized strategies are needed for
managing the learning rate which, at each iteration must balance integration of pre-existing knowledge of the HMM and
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the newly-acquired training data. In addition, the learning technique may become trapped in local maxima on the cost func-
tion on the parameter space.

To illustrate the difficulty, assume that the training block D2, which contains one or multiple sub-sequences, becomes
available after a HMM has been previously trained on a block D1 and deployed for operations. After training on D1, the
HMM has a parameter settings of k1. An on-line algorithm that optimizes, for instance, the log-likelihood function requires
re-estimating the HMM parameters over several iterations until this function is maximized for D2. The plain curve in Fig. 7
represents the log-likelihood function of an HMM(k1) that was previously learned D1, and then has incrementally learned D2

over the space of on HMM parameter (k). Since k1 is the only information at hand from previous data D1, the training process
starts from HMM(k1). Optimization of HMM parameters depends on the shape and position of the log-likelihood function of
HMM(k2) with respect to that of HMM(k1). For instance, if k1 was selected according to point (a) in Fig. 7, then the optimi-
zation will probably lead to point (d), which degrades HMM performance. If k1 was selected as point (b), the optimization
would probably lead to a better solution (f). In contrast, training a new HMM(k2) on D2 by starting from the start on different
initializations may lead to point (g) which, depending on the new data, may yield higher log-likelihood than all previous
models.

Boolean combination of responses from HMM(k1) and HMM(k2) in the receiver operating characteristics (ROC) space may
significantly improve system performance [53]. An incremental Boolean combination of ensembles of HMMs (EoHMMs)
have been proposed to overcome knowledge corruption with a single HMM system. When a new block of data becomes
available, a pool of HMMs is generated and combined to previously-generated HMMs. The HMMs are trained from each
new data block with different number of states and initializations, which allows to capture different underlying structures
of the data and hence increases diversity among pool members. The responses from these newly-trained HMMs are then
combined with those of the previously-trained HMMs in ROC space using a novel incremental Boolean combination tech-
nique [53].

Although incremental learning techniques of single HMM parameters are unable to overcome knowledge corruption, typ-
ical procedures for unbiased performance estimation may still help alleviating the corruption. This involves stopping the
training iterations when the log-likelihood of an HMM on independent validation data no longer improves. Using hold-
out or cross-validation procedures reduces the effects of overfitting and improves generalization performance during oper-
ations. When the situation allows, some proportion of a new training data should be dedicated to validation, providing a
good stopping criterion and improving the generalization capabilities of the classification system. In order to perform such
validation, a set of observations must be stored and updated over time in a fixed-sized buffer. Managing this validation set
over time depends on the application environment and should be selected and maintained according to some relevant selec-
tion criteria. For instance, in dynamically-changing environments, older validation data should be discarded and replaced
with new observations data that is more representative of the underlying data distribution. In static or cyclically-stationary
environments, older data should be preserved or rotated in a first-in-first-out manner. An information theoretic measure
called surprise has been recently proposed to capture uncertainty of a new observation with respect to the current knowl-
edge of the learning system [70]. The concept of surprise could be applied for maintaining the validation set, since it can
classify new data into abnormal, learnable or redundant for the current system [70].

A potential advantage of applying the on-line learning techniques over batch learning techniques to limited data scenario
resides in their added stochasticity, which stems from the rapid re-estimation of HMM parameters. This may aid escaping
local maxima during the early adaptation to newly provided data. Managing the internal learning rate, associated with each
sub-sequence or observation symbol, is therefore different for limited data than for abundant data. In general, employing a
fixed learning rate along with the validation strategies described above would maintaining the level of performance in both
static and dynamically-changing environments. However, more insights are required in this regard to determine if applying
a monotonically decreasing or auto-adaptive learning rates at the iteration, sequence, or symbol levels are beneficial for
escaping local maxima and hence improving the performance.

As presented in Section 4.2, the resource requirements for the on-line algorithms when learning from limited data are
comparable to that of when learning from abundant data. However, the time complexity presented for both block- and sym-
bol-wise techniques must be multiplied by the number of training iterations, which varies according to the algorithm em-
ployed, validation strategy and stopping criteria, and training data. Learning from limited data is less restrictive to memory
and time complexity in the abundant data. Therefore, even the most compute-intensive symbol-wise algorithms – requiring
OðN4Þ time complexity upon receiving each symbol – or block-wise algorithms – requiring OðN4TÞ time and OðNTÞmemory
complexity upon receiving each sub-sequence – can be afforded as long as they improve or maintain the HMM performance.
In limited data scenario, escaping local maxima, managing learning rates and stopping criteria may be more critical factors
for selecting an on-line algorithm than minimizing the resource requirements.

Finally, as for the abundant data scenario, applying the on-line learning techniques from this survey to adapt HMM
parameters to limited new data requires comparative benchmarking and statistical testing at the objective functions, opti-
mization techniques and algorithms (symbol-wise versus block-wise) levels, and according to various user-defined param-
eters (learning rate and window size). Empirical evaluations of these techniques across various applications, such as those
presented in [20], would provide useful insights.
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6. Conclusion

The performance of Hidden Markov Models (HMMs) in real-world applications are often degraded because they face com-
plex environments that change during operations, and because they are designed a priori using limited training data and
prior knowledge. To sustain a high level of performance, a HMM should be capable of efficiently adapting its parameters,
in response to new data observations from the environment, through incremental learning. Incremental learning allows
to update HMM parameters from new data without accessing the previously-learned data, however corrupting previ-
ously-acquired knowledge remains an issue. Standard techniques for estimating HMM parameters involve batch learning,
which assume a finite amount of training data available throughout the training process. The HMM parameters are estimated
over several training iterations, where each iteration requires processing the entire training data, until some objective func-
tion is maximized. To avoid knowledge corruption, learning new data with these techniques would require storing cumula-
tive data in memory and training from the start using all this data. This may represent a very costly solution.

This paper present a survey of techniques found in literature that are suitable for incremental learning of HMM param-
eters. These include on-line learning algorithms that have been initially proposed for learning from a long training sequence,
or block of sub-sequences. In this paper, these techniques are categorized according to the objective functions, optimization
techniques and target application. Some techniques are designed to update HMM parameters upon receiving a new symbol
(symbol-wise), while others update the parameters upon receiving a sequence (block-wise). Convergence properties of these
techniques are presented, along with an analysis of their time and memory complexity. In addition, the challenges faced
when these techniques are applied to incremental learning is assessed for scenarios in which the new training data is limited
and abundant.

When the new training data is abundant (scenario 1), the HMM parameters should be re-estimated to fit the source gen-
erating the data through one pass over a sequence of observations. When new data corresponds to a long sequence or block
of sub-sequences generated from a stationary source (static environment), these techniques must employ a specialized strat-
egy to manage the learning rate such that new data and existing knowledge are integrated without compromising the HMM
performance. This includes resetting a monotonically decreasing learning rate when provided with new data or employing
an auto-adaptive learning rate. Rapid convergence with limited resource requirements are other major factors in such cases.
However few learning algorithms have been provided with a proof of convergence or other relevant statistical properties.
Another important issue is the ability to operate in dynamically-changing environments. In such cases, some novelty criteria
on the new data should be employed to detect changes and trigger adaptation by resting a monotonically decreasing learn-
ing rate or fine-tuning an auto-adaptive learning rate.

When the new training data is limited (scenario 2), HMM parameters should be re-estimated over several iterations due
to the limited view of phenomena. Therefore, HMM parameters should be able to escape local maxima of the cost function
associated with the new data. Given the limited data, early stopping criteria through hold-out or cross-validation must be
considered when learning the new block of data to reduce the effects of overfitting. Accumulating and updating represen-
tative validation data set over time must be considered. However, this requires investigating some selection criteria for
maintaining the most informative sequences of observations and discarding less relevant ones. Another major challenge re-
sides in adapting the current operational HMM to the newly-acquired data without corrupting existing knowledge. One pos-
sible solution involves using an adaptive learning rate which, at each iteration, controls the weight given to the current HMM
with reference to the new information. This learning rate should preferably be inferred from the data.

Finally, this paper underscores the need for comparative benchmarking studies of these on-line algorithms for incremen-
tal learning in both abundant and limited data scenarios. Some interesting comparative studies, evaluation criteria and sta-
tistical testing methods are suggested for selecting an algorithm for a particular situation. Knowledge corruption and
performance degradation may arise because incremental learning of new data is initiated from a pre-existing HMM.
Learn-and-combine approaches [53] are among the promising solutions to limit the impact of knowledge corruption.
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