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ABSTRACT
This paper presents a geometric algorithm for the computation
of the constant-orientation workspace of 6-RUSparallel manip-
ulators. While the basic philosophy of this algorithm is not new,
the proposed computational process involving surface intersec-
tions is original and is the major contribution of the paper. Par-
ticularly, an analytic description of the points that constitute the
edges of the constant-orientation workspace is presented. The
latter is done through a new algorithm for the computation of the
intersection points between a general torus and a circle.

1 INTRODUCTION
It is well known that parallel manipulators (PMs) have a rather
limited and complex workspace. At the same time, the size
and shape of the workspace is probably one of the main design
criteria. As thecomplete workspaceof a 6-DOF PM is a six-
dimensional entity which is practically impossible to visualize,
algorithms for various subsets of it have been proposed. Apart
from the brute-force approach—the discretization algorithms—
all other computational schemes are strictly dependent on the
particular architecture. Thus, in general, a particular research
on workspace analysis can be virtually situated in a 3D array
whose axes are the type of workspace subset, the type of algo-
rithm (geometrical, numerical, analytical), and the type of PM
architecture.

In the area of 6-DOF PMs, most of the research has been
particularly aimed at the simplest and most popular architecture,
namely the 6-UPSPM, commonly known as theStewart-Gough
platform. Another less-studied but also common design is the
6-RUS class of PMs (Fig. 1). In this notation,P stands for an
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Fig. 1 Schematic of a 6-RUS parallel manipulator.

actuated prismatic joint,R for an actuated revolute joint,U for a
passive universal joint, andS for a passive spherical joint.

Undoubtedly, the most popular member of the 6-RUSclass
is the “Hexa” robot (Pierrot et al., 1990), of which an improved
version is already available. The first to propose this architecture,
however, was Hunt (1983). Some other prototypes have been
constructed by Zamanov (Merlet, 1997), by Takeda et al. (1997),
by Zabalza et al. (1999) and by Benea (1996). The latter has even
performed a detailed set of analyses on this type of manipulator.
Two other designs are also commercially available by Servos &
Simulation Inc. as motion simulation systems. Finally, a more
recent and more peculiar design has been introduced by Hexel
Corp., dubbed as the “Rotary Hexapod” (Chi, 1999).

Despite the relative popularity of the 6-RUS PM, few re-
searchers have analyzed in detail its workspace. What is more,
all of the existing prototypes have rather particular designs which
facilitate their analyses—the axes of the actuated revolute joints
are either coplanar, parallel, or even coincident. Benea (1996)
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has studied two subsets of the complete workspace. One of
them is theconstant-orientation workspacewhich is the three-
dimensional volume that can be attained by a point from the mo-
bile platform when the platform is kept at a constant orientation.
A discretizationalgorithm has been used for this purpose. The
philosophy of such an algorithm is rather simple and consists
roughly in discretizing the three-dimensional space, solving the
inverse kinematic problem at each point, and verifying the con-
straints that limit the workspace.

Such discretization algorithms are used by almost all re-
searchers and can be applied to any type of architecture. They
are clearly computationally intensive and require large amounts
of disk space for storing the computed point cloud. A more ad-
vanced approach for the computation of the constant-orientation
workspace is based on the geometric description of all con-
straints that limit the workspace. Unlike the discretization meth-
ods, the geometric methods are very fast and accurate. Further-
more, they bring insight into the problem and are very useful
during the design stage.

It is for the class of 6-UPSPMs, that such an approach was
first introduced by Gosselin (1990) and then again, under a mod-
ified version, by Gosselin et al. (1992), considering only the lim-
its of the actuators. In the first paper, horizontal cross-sections of
the constant-orientation workspace have been determined, while
in the second, the workspace edges have been defined directly.
Merlet (1994) later extended this geometric approach by includ-
ing the limited ranges of the passive joints and even the risk of
link interference. Then, for the class of 6-PUSPMs, Merlet and
Gosselin (1991) applied the same philosophy to compute hor-
izontal cross-sections of the workspace of their “active wrist”.
Recently, a more general and detailed workspace analysis fol-
lowing the same approach was performed by Bonev and Ryu
(1999b), where the constant-orientation workspace was directly
computed and represented as a solid model in the CAD/CAM
system CATIA.

To the best of our knowledge, a geometric algorithm has
never been applied to the general 6-RUS PM. Yet, only a
moderate change in the program code used in (Bonev and
Ryu, 1999b) would have been sufficient to produce a simi-
lar program for 6-RUS PMs. Besides, a similar implementa-
tion has also been carried out by Chrisp and Gindy (1999) in
Pro/ENGINEER for a 6-UPS PM. However, while the use of
CATIA or Pro/ENGINEER results in an excellent visualization
of the workspace, common experience shows the obvious disad-
vantages of this approach. Firstly, the two CAD/CAM systems,
although quite popular, are not necessarily available to all users
of PMs. Secondly, the natural trend in industry is to develop
large integrated programs that perform various types of analyses
and not just compute the constant-orientation workspace. That is
why, in this paper, we propose an algorithm inspired by the one
presented in (Gosselin et al., 1992) for computing and represent-
ing the edges of the constant-orientation workspace of 6-RUS
PMs. This algorithm can be easily implemented and requires no
special programming libraries.

1.1 Notation and Description of the Architecture
Following the notation used in (Bonev and Ryu, 1999b), we se-
lect a fixed reference frame, called thebase framewith centerO
and axesx, y, andz. Then, we also select amobile framethat is
fixed to the mobile platform, with centerC and axesx′, y′, and
z′ (Fig. 2). We denote the centers of the U-joints byAi and the
centers of the spherical joints attached at the mobile platform by
Bi (in this paperi = 1, . . . , 6). Each pointAi moves along a
circular trajectory referred to astrack i whose center is denoted
by Oi. We assume that each actuated revolute joint can rotate
fully, without any restriction imposed by the joint itself.

We will refer to the link connecting pointsOi andAi as
proximal link i and to the link connecting pointsAi andBi as
distal link i. Let the lengths of all proximal links be equal and
denoted byrA and the lengths of all distal links be equal and
denoted bỳ (Fig. 2).

Next, we select a local frame with center at pointOi and
axesx(i), y(i), andz(i), so thatz(i) coincides with the axis of
actuated revolute jointi. We will refer to that frame astrack
framei. The constant matrixRi defines the orientation of track
framei with respect to the base frame. Finally, let us denote the
angle between thex(i) axis and the lineOiAi by λi. This angle
is articular coordinatei.

We select also a moving frame that is fixed to proximal link
i, with center at pointAi and axesx(Ai), y(Ai), andz(Ai), so that
thez(Ai)-axis is always parallel to the track frame’sz(i)-axis, and
thex(Ai)-axis is always along lineOiAi, pointing away fromOi.
We will call this frameproximal link framei. The rotation matrix
that transforms coordinates from proximal link framei to track
framei is a function ofλi only and will be designated byRAi .

The mobile platform’s position is defined by vectorOC,
while its orientation is described by a rotation matrixR that is
defined by three Euler angles. The three coordinates of pointC
and the three Euler angles constitute the so-calledgeneralized
coordinates. The latter define completely thepose(the position
and orientation) of the mobile platform.

Finally, we will add the superscript′ to a vector when the
latter is expressed in the mobile frame, the superscript(i) when
the vector is expressed in track framei, and the superscript(Ai)

when the vector is expressed in proximal link framei. No super-
script will mean that the vector is expressed in the base frame.

1.2 Inverse Kinematics
The task of computing the set of articular coordinates from the
set of generalized coordinates is referred to as theinverse kine-
matic problem(IKP). Geometrically, for each serial chain, the
problem can be regarded as the one of finding the intersection
point(s) between a sphere of radius` and centerBi and the track
circle. Clearly, depending on the position of pointBi, this prob-
lem may have an infinite number of real solutions, two solutions,
a single one, or none at all.

The first step in the computation process is to calculate the
coordinates of each pointBi, first in the base frame, and then in
track framei:
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Fig. 2 Serial chain i.

OBi = OC + R CB′
i, (1)

OiB
(i)
i = RT

i (OBi −OOi). (2)

Now, by squaringAiB
(i)
i = OiB

(i)
i − OiA

(i)
i , we obtain

the main equation constituting the IKP:

`2 = ‖OiB
(i)
i ‖2 + r2A − 2OiB

(i)T
i OiA

(i)
i . (3)

If OiB
(i)T
i OiA

(i)
i = 0, i.e. if pointBi lies on thez(i)-axis, then

eq. (3) degenerates. That is to say, if, in addition,‖OiB
(i)
i ‖2 =

`2 − r2A, then the IKP has an infinite number of solutions.
From the definition of articular coordinateλi, we have that

OiA
(i)
i = rA [cosλi, sinλi, 0]T . Let also the components of

vectorOiB
(i)
i bex(i)

Bi
, y(i)

Bi
, andz(i)

Bi
. Then, eq. (3) reduces to

cosλi x
(i)
Bi

+ sinλi y
(i)
Bi

=
‖OiB

(i)
i ‖2 + r2A − `2

2rA
≡ pi. (4)

Now, in order to have a real solution to this equation, the
following inequality should hold true:

p2
i ≤ x

(i)2
Bi

+ y
(i)2
Bi

. (5)

This inequality is equivalent to the distal link’s length con-
straint that will be presented in section 2.1. Unlessp2

i = x
(i)2
Bi

+

y
(i)2
Bi

, there exist two real solutions to eq. (4), given by:

λi = 2 tan−1

y
(i)
Bi

+ bi

√
x

(i)2
Bi

+ y
(i)2
Bi

− p2
i

pi + x
(i)
Bi

 , (6)

wherebi = ±1 is a so-calledbranch index. As we just men-
tioned, when inequality (5) turns into an equality, serial chaini is
in a singular configuration—a situation that needs to be avoided.
Thus, in practice, for each chain, the branch index is set to a

constant. As we will define it geometrically in section 2.2, the
constraint thatbi should be constant for each chain will be called
the serial-chain singularity constraint. It will simply mean that
once the manipulator is assembled, distal linki should never be
allowed to lie in one plane with thez(i)-axis.

The organization of the rest of this paper is as follows. In
section 2, we describe the geometric method for obtaining the
constant-orientation workspace of a 6-RUSPM. Then, in section
3, we propose the general procedure to be used for computing
each vertex space, and then the procedure to be followed for trac-
ing the edges of the constant-orientation workspace. Section 4,
presents the main contribution of this paper which is the algo-
rithm for obtaining analytically the intersection points between a
general torus and a circle. This algorithm is necessary for com-
puting the edges of the workspace. Examples are then shown
in section 5. Finally, suggestions for further work are given in
section 6 and conclusions are made in the last section 7.

2 GEOMETRIC MODELING OF THE WORKSPACE
In order to describe a geometric method for computing the
constant-orientation workspace, it is necessary to establish ge-
ometric models for all the constraints that limit it. The basic idea
is first to regard all serial chains as independent and then to con-
sider their interdependence (Gosselin, 1990).

Thus, for a constant orientation of the mobile platform, let us
definevertex spacei as the volume that can be attained by vertex
Bi from chaini, ignoring the constraints imposed by all other
serial chains. The constraints that determine each vertex space
are (i) the distal link’s length, (ii) the serial-chain singularity, (iii)
the ranges of the base and platform joints, and (iv) the proximal
link’s length. However, we will explain later why the constraints
on the mobile platform joints cannot be geometrically described
in the determination of the vertex spaces. Also, as we already
mentioned, we assume that the revolute actuators can fully rotate,
i.e. there are no actuator limits. Next, we will investigate each
constraint individually to finally construct the vertex space.

2.1 Distal Link’s Length
In the proximal link’s frame, the set of points reachable byBi is
a sphereSi of radius` and centerAi.

2.2 Serial-Chain Singularity
As we already outlined in section 1.2, anRUSchain is at a sin-
gular configuration when a distal link is coplanar with the axis of
the corresponding actuated revolute joint, but its vertexBi does
not lie on that axis. In this singularity, the two branches of the
inverse kinematics of the serial chain meet and the mobile plat-
form loses one degree of freedom (Gosselin and Angeles, 1990).
In addition, if vertexBi lies on the axis of the actuated revolute
joint, then the two branches degenerate to an infinite number.

In any case, since passing through such singularities is unde-
sirable, the motion of each distal link should be restricted so that
the angle between vectorAiBi and the proximal link frame’s
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Fig. 3 Ranges of motion of the passive joints.

y(Ai)-axis be always in only one of the two ranges[0◦, 90◦)
(corresponding tobi = −1) or (90◦, 180◦] (corresponding to
bi = +1). Hence, we split sphereSi by thex(Ai)z(Ai)-plane.
Depending on the branch index, we take one of the two hemi-
spheres. The great circle formed by the intersection ofSi with
that plane will be denoted byCi,N .

2.3 Range of a Base Joint
The physical constraints that limit the range of a base joint can
be modeled by a general conical surface whose vertex is the cen-
ter of the joint. We already mentioned that the distal links are
attached to the proximal links through U-joints, but, in practice,
spherical joints are often used instead. Thus, we choose to model
the constraint imposed by the base joint as a circular cone, within
which the corresponding distal link is restrained to stay (Fig. 3).
If indeed, U-joints are used, then a better model would be a pyra-
mid as used in (Merlet, 1994), which, however, will inevitably
make the workspace analysis slightly more complicated.

Letα be themaximum misalignment angleof the base joints
(α < 90◦) and letj(Ai)

Ai
be the unit vector along the axis of sym-

metry of the joint at pointAi, expressed in proximal link frame
i. This vector is constant when expressed in that frame and de-
pends only on the design of the PM. Then, the allowable region
for pointBi consists of aspherical capof radius` and centerAi.
Thebase circleof that spherical cap will be designated byCi,A.

2.4 Range of a Mobile Platform Joint
The same cone model could be used for the platform spherical
joints. Letβ be the maximum misalignment angle of the plat-
form joints (β < 90◦) and letj′Bi

be the constant unit vector
along the axis of symmetry of the spherical joint with centerBi

expressed in the mobile frame. Then, the allowable region for
point Ai, referred to the mobile frame, consists of a spherical
cap of radius̀ and centerBi. Let −j(Ai)

Bi
be the opposite unit

vector, expressed in the proximal link framei, and defined as:

j(Ai)
Bi

= RT
Ai

RT
i R j′Bi

. (7)

Thus, with respect to the proximal link frame, pointBi is
located on an equivalent spherical cap of radius` but centerAi.
Now, for the 6-PUS PMs (Bonev and Ryu, 1999b), the orienta-
tions of the proximal link frames are fixed with respect to the

Fig. 4 The allowable spherical region.

base frame. Thus, when pointAi moves along the linear track,
the equivalent spherical cap representing the constraint on spher-
ical joint i remains unchanged in proximal link framei. This,
however, is not true for the 6-RUSPMs, sinceRAi in eq. (7) is
not constant. Therefore, the spherical cap has a different orienta-
tion in proximal link framei for each different position of point
Ai on the circular track.

Fortunately, simulations performed by the authors on several
different designs have shown that the constraint imposed by the
spherical joint ranges is much less frequently violated than the
constraint on the U-joints. Thus, we ignore this constraint for the
sake of describing geometrically the constant-orientation work-
space. If this constraint is too tight to be neglected, then the use
of a discretization or a numerical method is the only alternative.

2.5 Proximal Link’s Length
The allowable spherical regionfor point Bi in proximal link
frame i is the intersection of the hemisphere defined in section
2.2 and the spherical cap defined in section 2.3 (Fig. 4). Now,
in track framei, the allowable spatial region for vertexBi is the
volume swept by the allowable spherical region by revolving it
about thez(i)-axis. This volume isvertex spacei (Fig. 5). Note
thatignoring the constraints on the mobile platform joints makes
each vertex space independent from the orientation of the mobile
platform. Thus, for a given design, we can store the data defin-
ing all vertex spaces and avoid computing them for each different
orientation of the mobile platform.

After all six vertex spaces have been defined, we must con-
sider the fact that all pointsBi are fixed to the mobile platform.
Let us call this theclosure constraint. Since the mobile platform
is kept at a constant orientation, then the allowable spatial re-
gion for pointC—taking into account the restrictions imposed
by only serial chaini—is obtained by translating vertex space
i along vectorBiC. Thus, the intersection of all six translated
vertex spaces is the constant-orientation workspace of the PM.
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Fig. 5 Vertex space i.

3 IMPLEMENTATION PROCEDURES
Next, we will propose the procedure for determining each vertex
space. The idea is to obtain explicitly thecontourof the allow-
able spherical region and then to construct the boundary repre-
sentation of the vertex space as the surface of revolution obtained
by revolving that contour. After that, we will consider the prob-
lem of obtaining the edges of the constant-orientation workspace.

3.1 Procedure for the Vertex Spaces
Each of the two circlesCi,N andCi,A, can be defined by a para-
metric equation, in which the parameterui,1 (respectivelyui,2)
varies from−π to +π. Then, for each vertex space, we calcu-
late the intersection points between the two circles, storing the
values of the parameterui,1 (respectivelyui,2) corresponding to
each intersection point. Two different situations may occur de-

pending on the value ofξ = cos−1
(
[0,−bi, 0]T j(Ai)

Ai

)
.

Case 1:The number of intersection points is 0 or 1;
If ξ ≥ π/2 + α, then stop—vertex spacei and, consequently,
the constant-orientation workspace do not exist for the current
orientation and design. Else, ifξ ≤ π/2 − α, then the contour
of the allowable spherical region is the whole circleCi,A and the
vertex space constitutes ageneral torus†, i.e.ui ∈ [−π,+π].

Case 2:The number of intersection points is 2;
If π/2 + α > ξ > π/2 − α, then there exist two distinct inter-
section points. For each circle, calculate the center point of each
of the two arcs connecting the intersection points. If the cen-
ter point lies on the hemisphere and on the spherical cap, then
the arc belongs to the allowable spherical region. Store the arc’s
range as the ordered couple{us

i,k, u
e
i,k}, so that ifus

i,k < ue
i,k,

thenui,k ∈ [us
i,k, u

e
i,k], elseui,k ∈ [us

i,k,+π]∪(−π, ue
i,k], where

k = 1, 2. In this case, the vertex space has two distinct boundary
surfaces, one of which is a portion of a right circular torus, and
the other, a portion of a general torus.

†a surface obtained by revolving a circle about an axis that does not necessar-
ily lie in the plane of the circle (Fichter and Hunt, 1975).

The number of boundary surfaces (1 or 2), the data for cir-
cle(s)Ci,A (andCi,N ), and the range limits{us

i,k, u
e
i,k} is all that

needs to be saved for vertex spacei. In addition, in Case 2, we
also need to calculate and save the data for the two circles that
define the edges of the vertex space. Finally, we modify vector
OOi that positions the origin of track framei by adding to it
vectorBiC.

3.2 Procedure for the Workspace
Since each vertex space has up to two boundary surfaces, our
problem can be decomposed into a finite number of intersec-
tions between surfaces. Each of the surfaces is a parametric
toroidal surface depending on two parameters,ui,k ∈ [us

i,k, u
e
i,k]

or ui,k ∈ [us
i,k,+π] ∪ (−π, ue

i,k], andvi,k ∈ [−π,+π], wherei
corresponds to the vertex space to which the surface belongs, and
k = 1, 2. In general, it is not possible to obtain directly analytic
(parametric) expressions for the intersection curves. Thus, we
proceed as in (Johnstone, 1993) and use circle decomposition to
reduce the surface intersection problem to the problem of finding
the intersection points between a general torus and a circle.

We initialize as many lists as there are pairs of boundary
surfaces. There may be up to 60inter-space pairs(15 pairs of
vertex spaces× 4 pairs of boundary surfaces, each pair coming
from different vertex spaces) and 6intra-space pairs, each pair
coming from the same vertex space.

To compute the edges of the workspace, we take each inter-
space pair of surfaces—one belonging to vertex spacei and the
other to vertex spacej. Then, for the torus to which one of the
boundary surfaces belongs, say from vertex spacej, we start to
increment the parametervj from −π to π. For each discrete
value ofvj , we find the intersection points, in terms of the pa-
rametersuj andui, between the corresponding circle and the
torus to which the other boundary surface belongs using the al-
gorithm presented in section 4. The next step is to eliminate those
solutions that are not within the permissible ranges ofuj andui.

Then, we simply calculate the Cartesian coordinates of each
point corresponding to a solution foruj . Each such point lies
on the boundaries of vertex spacesi andj. Then, at this point,
we solve the IKP for all serial chains except chainsi andj, and
check for all constraints. The point will lie inside the four vertex
spaces if all constraints are satisfied. The remaining points be-
long to the edges of the constant-orientation workspace and are
put into a corresponding list.

Finally, for each intra-space pair of boundary surfaces, say
corresponding to chaini, we already know the two circles con-
stituting the intersection curves. Then, we intersect each circle
with the (maximum 5×2) boundary surfaces of all vertex spaces
except vertex spacei. This is done again by using the algorithm
presented in section 4. The intersection points divide each circle
into a maximum number of 4×10 arcs. For each arc, we calcu-
late its center point, and at this point, we solve the IKP for the
five serial chains. If all constraints are satisfied, then the corre-
sponding arc is discretized and put into a corresponding list.
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(a) (b)

Fig. 6 (a) Tracing a general torus and (b) several pos-
sible diametral sections.

4 INTERSECTING A TORUS WITH A CIRCLE
In this section, we will define the equation of a general torus from
vertex spacei in track framei (for brevity, we will omit the index
k = 1, 2). Then, we will present our algorithm for obtaining the
intersection points between that torus and a circle. Note that,
to our best knowledge, no solutions for this problem have been
presented before.

4.1 Algebraic Approach
A detailed study on the general torus was made by Fichter and
Hunt (1975) related to the design of spatial linkages. Indeed, the
general torus is the 2D locus of a point attached to a body that
is joined back to the reference system through anRRkinematic
chain (Fig. 6a). Its algebraic equation is:

(
x2+y2+z2−a2−b2−f2

)2
=4a2

[
b2−

(
z − f cos γ

sin γ

)2
]
, (8)

where for a right circular torus,f = 0 andγ = π/2.
The general torus is a quartic surface that contains the imag-

inary spherical circle twice, therefore having fullcircularity
(Hunt, 1978). Consequently, its intersection curve with a plane
is abicircular quartic, including its diametral sections (Fig. 6b).
Thus, since a circle has circularity one, there may be at most 4
intersection points between a general torus and a circle.

A circle in space can be defined as the system of two alge-
braic equations—one of a sphere and one of a plane. Those two
equations and eq. (8) can then be solved for the unknownsx, y,
andz. In fact, we can even set up the algebraic equation for the
other toroidal surface and then trace the intersection curves us-
ing some surface intersection algorithm for algebraic (implicit)
surfaces. However, such an approach suffers from disadvantages
such as the necessity of determining starting points and the diffi-
culties in tracing the different branches of the intersection curves
(Patrikalakis and Prakash, 1990). Furthermore, in the area of
mechanism design, a parametric approach is much more relevant
and may suggest other applications than the one discussed here,
hence, our decision to use the parametric approach.

4.2 Parametric Approach
A circle in space can be defined by its radiusr, coordinatespx,
py, andpz of its center, and unit vector along the axis of symme-
try defined by the anglesθ andφ, such that its equation is

C(i)(ui)=

 cφ −sφ 0
sφ cφ 0
0 0 1

 cθ 0 sθ

0 1 0
−sθ 0 cθ

r cosui

r sinui

0

+

px

py

pz

, (9)

wherecφ ≡ cosφ, sφ ≡ sinφ, etc.,θ is the angle between the
z(i)-axis and the unit vector, andφ is the angle between thex(i)-
axis and the projection of the unit vector onto thex(i)y(i)-plane.
Thus, for example, for circleCi,N , r = `, px = rA, py = pz =
0, andθ = φ = π/2.

Each general torus is generated by revolving the correspond-
ing circle, whose equation was derived above, about the track’s
z(i)-axis. Therefore, the parametric equation of the resulting
torus with respect to track framei is

S(i)(ui, vi) =

 cos vi − sin vi 0
sin vi cos vi 0

0 0 1

C(i)(ui), (10)

wherevi ∈ [−π,+π].
The parametric equation for a general torus,S(j)(uj , vj),

from vertex spacej expressed in track framej has exactly the
same form as the one defined by eq. (10). Settingvj equal to
a constant,S(j)(uj , vj) ≡ C(j)(uj) becomes the equation of a
circle. Finally,C∗(i)(uj) = OOj−OOi +RT

i RjC(j)(uj) will
be the expression for that circle referred to track framei, where
vectorsOOi andOOj are the modified positions of the origins
of track framesi andj (recall section 3.1).

Obviously, one can find equivalent valuesθ∗, φ∗, p∗x, p∗y,
andp∗z, such thatC∗(i)(uj) can be written in exactly the same
form as in eq. (9). Note, however, that due to the rotation defined
by RT

i Rj , the permissible range of the variableuj should be
modified by a certain offset, depending onRT

i Rj and the value
of vj . Hence, the matrix equation that needs to be solved is

S(i)(ui, vi) = C∗(i)(uj). (11)

The above is a system of three coupled sine-cosine polyno-
mial equations in the three unknownsui, vi, anduj . Now, the
first part of the solution can be applied for the intersection of any
surface of revolution with any spatial curve. The idea is that the
distance from the origin to any point on the surface of revolution
is dependent only on the parameterui. Thus, we can obtain an
equation that does not containvi by writing

‖S(i)(ui, vi)‖2 = ‖C∗(i)(uj)‖2, (12)

where‖·‖ is the Euclidean norm. In our case, the above equation
is not only free ofvi but also has a rather simple form:

A sinui +B cosui + C sinuj +D cosuj + E = 0, (13)
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whereA, B, C, D, andE are constants given in Appendix A.
The other equation that is also free ofvi is simply the last equa-
tion of the system of three equations (11). Thez-component of
S(i)(ui, vi) is clearly not dependent onvi, sincez(i) is the axis
of revolution. Indeed, in our case, the equation is:

F cosui +G cosuj +H = 0, (14)

whereF ,G, andH are again constants given in Appendix A.
The second step of the solution process is to solve eqs. (13)

and (14) forsinui andcosui obtaining:

sinui =
(BG−DF ) cosuj − CF sinuj +BH−EF

AF
, (15)

cosui = −G cosui +H

F
. (16)

Then, from the identitysin2 ui +cos2 ui = 1, we may obtain the
following equation which is dependent only onuj :

J sinuj +K cosuj +L sinuj cosuj +M cos2 uj +N= 0 (17)

where

J = 2 (CEF 2 −BCFH),
K = 2 (A2GH +DEF 2 +B2GH −BEFG−BDFH),
L = 2 (CDF 2 −BCFG),
M = (DF −BG)2 + (AG)2 − (CF )2,
N = (BH − EF )2 + (CF )2 + (AH)2 − (AF )2.

Next, we perform the tangent-half-angle substitution:

sinuj =
2tj

1 + t2j
, cosuj =

1− t2j
1 + t2j

, (18)

wheretj = tan(uj/2). After substituting the above identities in
eq. (17), multiplying by(1 + t2j )

2, and rearranging, we obtain:

q4t
4
j + q3t

3
j + q2t

2
j + q1tj + q0 = 0, (19)

where

q4 = M +N −K, q3 = 2(J − L), q2 = 2(N −M),
q1 = 2(J + L), q0 = N +K +M.

The solutions fortj may be found analytically by solving
the polynomial of degree 4 in eq. (19). Then, for each real so-
lution for tj , we obtain the corresponding value foruj using
uj = 2 tan−1(tj). Note thattan(uj/2) is not defined atuj = π,
and indeed, if the latter is a solution to eq. (17), thenq4 = 0.
Thus, ifq4 = 0, we add the solutionuj = π. Finally, we substi-
tute the values foruj into eqs. (15) and (16) and solve forui.

The complete solution of the system of eqs. (11) is an inter-
esting problem involving a large number of particular cases (sin-
gularities). Indeed, this is exactly what should have been done

if our task were the solution to the IKP of anRRSRkinematic
chain. However, in our case we are not interested in the values
of vi, since we have assumed that there are no actuated limits.
Hence, the only cases that need to considered are those that may
prevent us from finding unique solutions forui anduj .

In our particular problem, the circle that generates the gen-
eral torus does not have an arbitrary position and orientation.
Thus, some of the cases will drop out and should not be con-
sidered. Indeed, the constantA = px sinφ − py cosφ is equal
to zero if and only if the axis of the generating circle inter-
sects thez(i)-axis. However, this could happen if and only if
j(Ai)
Ai

= [±1, 0, 0]T , in which caseB = 0 and the torus degener-
ates to a doubly-covered spherical ring (or even a sphere).

Similarly, F = −r sin θ is equal to zero if and only if
j(Ai)
Ai

= [0, 0,±1]T in which case the torus degenerates to a
doubly-covered planar ring or annulus. If alsoG = r∗ sin θ∗

andH = pz − p∗z are equal to zero, than the circle from vertex
spacej lies in the plane of the degenerated torus which could
lead to having an arc as intersection rather than distinct points.

To simplify our task, we will eliminate the above degenerate
cases by imposing the requirement thatj(Ai)

Ai
6= [±1, 0, 0]T and

j(Ai)
Ai

6= [0, 0,±1]T . Indeed, installing the U-joints in such a way

that j(Ai)
Ai

is along thex(Ai)- or z(Ai)-axis is unlikely to lead to
an optimal workspace.

Finally, it remains to consider the peculiar case in which
C = D = G = 0 which geometrically corresponds to the circle
from vertex spacej lying in a plane parallel to thex(i)y(i)-plane
and with center on thez(i)-axis. In this case, eq. (17) degenerates
to N = 0, so if it holds true, then the intersection we look for
is the entire circle from vertex spacej. If this happens, then we
discretize the arc of the circle defined by the permissible range
of uj into a finite number of points.

Hence, in any case we end up with a finite number of inter-
section points (most frequently less than or equal to 4) defined
by the parametersuj andui.

5 EXAMPLES
To illustrate our geometric method, we take as an example a
6-RUS PM whose data is given in Appendix B. In our imple-
mentation, we adopt the choice ofmodified Euler anglesintro-
duced in (Bonev and Ryu, 1999a) to represent the orientation of
the mobile platform. For this choice, we rotate first the mobile
platform about the basez-axis by an angle−φ, then about the
basey-axis by an angleθ, then about the basez-axis by an angle
φ, and finally about the mobilez′-axis by an angleψ.

Defined in this way, angleψ is the roll angle, angleθ is
the tilt angle, and angleφ is the angle between the basex-axis
and the projection of the mobilez′-axis onto the basexy-plane.
These angles have the property that the constant-orientation
workspace for a fixed direction of the mobilez′-axis (φ, θ) tends
to be largest atψ = 0◦ (for axisymmetric designs as the one used
in the present example).
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Fig. 7 The workspace of the 6-RUS PM for the refer-
ence orientation (edges displayed only).

Fig. 8 The workspace of the 6-RUS PM for a tilt angle
of 10◦ (edges displayed only).

The proposed methodology was implemented in MATLAB
5, taking full advantage of the newly introduced data structures
and cell arrays. Two examples of the constant-orientation work-
space of the 6-RUSPM are presented here. The first one is at the
reference orientation(Fig. 7),φ = θ = ψ = 0◦, while the second
one is at a tilted orientation (Fig. 8),φ = ψ = 0◦ andθ = 10◦.
In the first two figures, only the edges are displayed as computed
using the algorithm proposed in this paper. The nearly-horizontal
edges that are situated somewhere in the middle of the workspace
are circular arcs coming from the intra-space pairs of boundary
surfaces. In the second example, curves from all types of inter-
space and intra-space pairs of boundary surfaces are present. In
this example, we also have a large patch of general torus which
accounts for the absence of an expected edge, as seen in the top
view in Fig. 8.

Fig. 9 The workspace of the 6-RUS PM for a tilt angle
of 10◦ (edges and horizontal cross-sections).

Finally, we used a discretization method for computing the
horizontal cross-sections of the constant-orientation workspace.
This was, naturally, done to test our method but also to compare
the quality of the two types of visualization techniques. In Fig. 9,
the same example as the one in Fig. 8 is presented again but
this time together with a set of equally-spaced horizontal cross-
sections. It is not difficult to imagine that a representation of
horizontal slices only would have been quite poor. On the other
hand, edges only do not give a perfect impression of the work-
space either, though changing interactively the viewpoint on the
display is quite helpful. In addition, the computation of the edges
does not allow the computation of the workspace volume which
is an important design criterion. Thus, it is advisory to compute
and visualize both the edges and the horizontal slices.

6 FURTHER WORK AND SUGGESTIONS
Having computed the edges of the constant-orientation work-
space, its boundary surfaces might be extracted from the vertex
spaces to allow a better visualization, similar to the one obtained
by Bonev and Ryu (1999b) by using CATIA. Alternatively, there
are programming libraries (quite expensive though) that allow di-
rectly the numerical computation of intersections between solids.
So, if such a library is used, the use of the algorithm proposed in
section 4 is avoided.

Another common alternative is finding horizontal cross-
sections of the workspace. Thus, once the vertex spaces are
found, we need to find the intersection curves between each ver-
tex space and the horizontal plane in which a given workspace
slice is to be computed. This time, the most appropriate method
for representing the intersection curves is to use the algebraic
form by simply substituting the equation of the plane in the alge-
braic equation of the general torus, eq. (8). As mentioned before,
these planar curves are bicircular quartics. Thus, the workspace
slice can be obtained by intersecting the six quartics coming from
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the six vertex spaces, for which a numerical method may be used.
Best results, however, can be obtained by computing and display-
ing both the workspace edges and the horizontal cross-sections.

Note that for some of the existing 6-RUSPMs, the compu-
tation of the horizontal cross-sections is a simple task. Namely,
for Hexel’s “Rotary Hexapod” and for one of the motion systems
of Servos & Simulation Inc., the axes of the actuated revolute
joints are all vertical, and hence, the cross-sections are simply
concentric circles.

On the other hand, for some 6-RUS PMs, other constraints
may exist. For example, for the same “Rotary Hexapod”, all
U-joints are mounted on sliders that move on the same circular
guide. Thus, we must consider also a so-calledslider-slider con-
straint, ensuring that no sliders collide.

Finally, it is interesting to mention the work done by Za-
balza et al. (1999) in which the authors purposefully seek the
configurations of a 6-RUS PM in which all serial chains are at
singularity. The idea is that the precision of the PM in such con-
figurations is much higher. In the light of the current study, we
may roughly state that the precision of the PM tends to be higher
near the edges of its constant-orientation workspace.

7 CONCLUSIONS
The original algorithm for the intersection between a general
torus and a circle that we have proposed nearly concludes the
theoretical research in the area of constant-orientation workspace
computation for 6-RUS PMs. The proposed intersection algo-
rithm may also be of interest for the CAD community as well as
for the researchers working in the area of singularity and work-
space analysis of serial robots.
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APPENDIX A
The coefficients of eqs. (13) and (14) are given as

A = 2r(cφpy − sφpx),
B = 2r(cφcθpx − sθpz + sφcθpy),
C = −2r∗(cφ∗p∗y − sφ∗p

∗
x),

D = −2r∗(cφ∗cθ∗p∗x − sθ∗p
∗
z + sφ∗cθ∗p

∗
y),

E = p2
x + p2

y + p2
z + r2 − (p∗2x + p∗2y + p∗2z + r∗2),

F = −rsθ, G = r∗sθ∗ , H = pz − p∗z.
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APPENDIX B
Table 1 shows the data for the 6-RUSPM used for the examples
in section 5, whereni is the unit vector along thez(i)-axis of
track framei, expressed in the base frame. In addition,` = 150
mm,rA = 90 mm,α = 70◦, andbi = (−1)i+1 (i = 1, . . . , 6).

Table 1 Geometry of the 6-RUS PM (in [mm]).

i OOi ni CB′
i j(Ai)

Ai

1

 100.000
−173.205

0.000

  −0.500
0.866
0.000

  70.707
−84.265

50.000

  0.380
−0.912

0.152


2

 200.000
0.000
0.000

  −1.000
0.000
0.000

  108.329
−19.101

50.000

  0.380
0.912
0.152


3

 100.000
173.205

0.000

  −0.500
−0.866

0.000

  37.622
103.366
50.000

  0.380
−0.912

0.152


4

 −100.000
173.205

0.000

  0.500
−0.866

0.000

  −37.622
103.366
50.000

  0.380
0.912
0.152


5

 −200.000
0.000
0.000

  1.000
0.000
0.000

  −108.329
−19.101

50.000

  0.380
−0.912

0.152


6

 −100.000
−173.205

0.000

  0.500
0.866
0.000

  −70.707
−84.265

50.000

  0.380
0.912
0.152


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