Au terme de ce cours, l’étudiant sera en mesure :
Modélisation sous forme de problèmes d’optimisation: variables décisionnelles, fonction-objectif, contraintes, paramètres; modèles linéaires et non linéaires; modèles en nombres entiers; choix d’une formulation; modélisation et incertitude. Méthodes d’optimisation: algorithme du simplexe; algorithme de séparation et d’évaluation. Heuristiques : algorithme glouton, recherche locale; recuit simulé, recherche taboue, algorithme génétique, colonies de fourmis. Pratique sur des outils informatiques.