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Meta-learning for fast classifier adaptation to new
users of Signature Verification systems

Luiz G. Hafemann, Robert Sabourin, Member, IEEE, and Luiz S. Oliveira.

Abstract—Offline Handwritten Signature verification presents
a challenging Pattern Recognition problem, where only knowl-
edge of the positive class is available for training. While classifiers
have access to a few genuine signatures for training, during
generalization they also need to discriminate forgeries. This is
particularly challenging for skilled forgeries, where a forger
practices imitating the user’s signature, and often is able to create
forgeries visually close to the original signatures. Most work in
the literature address this issue by training for a surrogate ob-
jective: discriminating genuine signatures of a user and random
forgeries (signatures from other users). In this work, we propose
a solution for this problem based on meta-learning, where there
are two levels of learning: a task-level (where a task is to learn a
classifier for a given user) and a meta-level (learning across tasks).
In particular, the meta-learner guides the adaptation (learning)
of a classifier for each user, which is a lightweight operation that
only requires genuine signatures. The meta-learning procedure
learns what is common for the classification across different
users. In a scenario where skilled forgeries from a subset of
users are available, the meta-learner can guide classifiers to be
discriminative of skilled forgeries even if the classifiers themselves
do not use skilled forgeries for learning. Experiments conducted
on the GPDS-960 dataset show improved performance compared
to Writer-Independent systems, and achieve results comparable
to state-of-the-art Writer-Dependent systems in the regime of few
samples per user (5 reference signatures).

Index Terms—Meta Learning, Signature Verification, Biomet-
rics

I. INTRODUCTION

Offline Handwritten signature verification remains a chal-
lenging problem in the presence of skilled forgeries, where
the forger has access to the user’s signature and practices
imitating it [1]. This problem is particularly challenging since
in a practical application scenario we cannot expect to have
access to skilled forgeries for every user in the system for
training the classifiers.

This problem is mainly addressed in three ways in the lit-
erature: (i) training a classifier for each user using a surrogate
objective, where the negative samples are genuine signatures
from other users (called random forgeries in this context) [2],
[3], [4] (ii) training a one-class classifier for each user [5]; (iii)
training a global, writer-independent classifier [6], [7], [8].
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The first alternative (Writer Dependent (WD) classification)
optimizes a surrogate objective, which therefore can be sub-
optimal. The second alternative (one class Writer Dependent
classification) is an appropriate formulation of the problem, but
empirical results show that this approach performs worse than
the first. A possible reason is that for signature verification
tasks we normally have only a small number of samples
per user, which makes it hard to estimate the support (or
probability density) of the positive class. For instance, recent
work considers a feature space in R2048, while the number
of signatures from one individual can be as low as 1-5 in
practical applications [1], [4]. Lastly, the third alternative
(Writer Independent (WI) classification) alleviates the problem
of a small number of samples per user by transforming the
problem in a binary classification problem: comparing a query
signature with a reference (template) signature, where the same
classifier is used for all users [9], [7]. However, empirically
these approaches also show worse performance than WD
classification, at least when the number of signatures available
for training (per user) is larger than 1 [4]. We hypothesize that
a reason for this gap in performance is that the WI classifiers
compare a query signature with a reference signature one at
a time, while the WD classifiers are trained with multiple
references at the same time, and therefore can better estimate
the invariances in a person’s signature (intra-class variation).

Considering different approaches, WD classification (al-
ternative (i) above) shows better empirical performance [1].
However, this approach has other shortcomings compared to
WI approaches: they require training a classifier for each user,
which is not desirable in some scenarios: For instance, when
the number of users is very large, and each user do not use the
system often - many classifiers are trained but are almost never
used. Also, in the cases where features are learned from data
(e.g. [4]), if we want to change the feature representation, for
instance by training with new data, it is not straightforward
to incorporate the new features without re-training all WD
classifiers in the system, while a global (WI) classifier would
not require any extra step. WI systems also naturally handles
the issue of adding more signatures to the reference set.

In this work, we propose to formulate the task as a
meta-learning problem, inspired by the work of a Forensics
Handwritten Expert: the expert acquires knowledge examining
genuine signatures and forgeries from several people along
his/her training and work experience. For a new case, along
with knowledge of signatures from the individual, this previous
experience is also used when analyzing a signature of interest.

The main contributions of this paper are:
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• We formulate the signature verification task as a meta-
learning problem, considering a meta-learner that learns
across-tasks (classification for specific individuals), that
is subsequently adapted to a particular user in order to
make a prediction on a query signature.

• We extend Model Agnostic Meta Learning (MAML)
[10], to consider different loss functions during classifier
adaptation and meta-learning, to address the issue of
partial-knowledge during training.

• The resulting system is as scalable as a WI system
(there is a single meta-model), but that is also adaptable
for individual users with a lightweight operation (a few
gradient descent steps). Additionally, contrary to other
work that learns representations to train WD classifiers
([4]), not only the final classification layer is adapted
to the new user, but the feature representation is also
adapted.

• We evaluate the approach in four widely used datasets,
achieving results comparable to state-of-the-art on the
GPDS-960 dataset. Finally, we discuss the limitations of
the approach, most notably the requirement of using data
from a large number of users for training, and worse
results when transferring the meta-learner to the other
datasets. Code to reproduce the experiments can be found
at https://github.com/luizgh/sigver.

The paper is organized as follows: section II reviews the
related work on signature verification and meta-learning. Sec-
tion III introduces the formulation of signature verification as
a meta-learning problem, and the proposed algorithm. Section
IV describes the experimental protocol, and section V presents
and discusses our results. Finally, section VI concludes the
paper.

II. RELATED WORK

The objective of signature verification systems is to classify
a query signature as being genuine (produced by the claimed
individual), or a forgery (produced by another person). In the
Pattern Recognition community, different forgeries are consid-
ered: Random forgeries - in which the forger has no knowledge
of the user’s signature, and use his signature instead; Simple
forgeries - in which the forger knows the person’s name,
but not their signature; Skilled forgeries - where the forger
has access to the user’s signature, and practices imitating
it. While the problem of distinguishing random and simple
forgeries is relatively easy (i.e. low error rates in state-of-
the-art classifiers), skilled forgeries still present a significant
challenge for classification.

These systems can be broadly categorized as Writer-
Dependent (WD, also called User-Dependent) and Writer-
Independent (WI, also called User-Independent). For Writer-
Dependent classifiers, we consider a dataset for each user
{x, y}ni=1, where x are signatures, and y indicate whether
they are genuine signatures from the user (y = 1) or random
forgeries (y = 0) [2], [3], [4]. Some work consider one-class
WD classifiers, in which only genuine signatures from the
user are used for training (only y = 1) [5]. For WI classifiers,
there are two main approaches: training a single classifier in
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Fig. 1: Common dataset separation for Feature Learning fol-
lowed by WD classification, on the GPDS dataset. Features are
learned in D. Model selection is conducted in Vv . The system
is evaluated by training WD classifiers for the exploitation set
E . [4]

a dissimilarity space, and metric learning approaches. In the
first case, the training samples are difference of feature vectors:
|φ(x1) − φ(x2)|, with y = 1 if both signatures are from the
same user, and y = 0 otherwise [6], [7]. The metric learning
approaches use a siamese network architecture [11], which
takes two signatures (x1, x2) as input, and outputs a metric
(distance) between them.

Recent work on signature verification rely on feature learn-
ing methods [12], [4], [13], [14], [8], in which learning is
conducted directly from signature pixels, instead of relying on
handcrafted feature extractors. In this case, a function φ(x)
is learned to extract features from signature images x, by
training using a surrogate objective, e.g. dictionary learning
[15], [14], or classifying the user that produce the signatures
[4]. For instance, the SigNet model [4] is a Convolutional
Neural Network trained with the following objective:

L = −
∑
j

yij logP (yj |Xi) (1)

Where Xi is a signature and yi is the user that wrote the signa-
ture. Therefore, the network is trained to obtain a representa-
tion space where signatures from different people are linearly
separable [4]. This feature representation is learned from a
Development dataset D, which is then used to extract features
and train Writer-Dependent classifiers for a disjoint set of
users (exploitation set E) - a diagram of dataset separation is
shown in Figure 1. While this approach achieved state-of-the-
art verification performance, we note that the feature learning
process does not directly optimize for the final objective of the
system, which is distinguish genuine signatures and forgeries.
This is addressed to some extent in the SigNet-F model, by
also classifying whether or not the signature is a forgery.
However, in that case, the neuron classifying forgeries does not
use a reference signature from the user. While this was shown
to be helpful in obtaining a good feature representation, this
neuron did not generalize in classifying forgeries for unseen
users [4].

Such methods using feature learning followed by WD classi-
fication also have other shortcomings: they require training one
classifier for each user, which may be an expensive operation
(e.g. best results in [12], [4] were reported with an SVM
trained with the RBF kernel for each user). If the feature

https://github.com/luizgh/sigver
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genuine genuine ? ?

Fig. 2: Illustration of the data available for one task (user).
Left: the reference (support) set. Right: query samples.

extractor is updated (e.g. trained with more data), then all
classifiers need to be retrained. Also, these systems use a fixed
representation for all users, and it is possible that adapting
the representation for each user would yield improvements in
classification performance.

It is also worth noting that, for WI classification, signature
verification systems can be trained jointly (feature extraction
and classification) [8]. Despite being jointly trained, such WI
systems still perform worse than WD classifiers trained with
features learned with surrogate objectives, at least when more
than one signature references are used [4]. A possible reason
for this gap is the fact that WI systems compare the query
signature to each reference individually (or comparing with
the centroid of the signatures), which is less powerful than
training a classifier for the user, in capturing the invariances
of the person’s signature.

A. Meta-learning

In a broad sense, meta-learning is concerned with the
problem of learning to learn, with origins in the 80’s and
90’s [16], [17]. More recently, algorithms based on meta-
learning have achieved state-of-the-art results in tasks such
as hyperparameter optimization [18], neural network architec-
ture search [19]), and few-shot learning [20], [10]. Few-shot
learning considers a scenario where only a few samples from
each class are available for training, which is similar to actual
application scenarios in handwritten signature verification.

The goal of these meta-learning approaches for few-shot
learning is to train a model that can quickly (i.e. in a few
iterations) adapt to a new task using only a few samples.
A new task in this context refers, for instance, to classify
a new object, for which only a few samples are known.
Ravi and Larochelle [20] proposed learning an optimizer and
initialization for the tasks (Meta Nets). They propose using a
Long short-term memory (LSTM) model to learn the update
rule for adapting the network parameters to a new task. Finn et
al [10] proposed a Model Agnostic Meta Learning (MAML)
procedure that does not require any extra parameters. This
model optimizes the sensitivity of the weights, that is, obtain
a feature representation that is highly adaptive, such that a
single (or a few) gradient descent iterations are sufficient to
optimize to new tasks.

III. PROPOSED METHOD

In this work we propose a meta-learning approach for
signature verification. This formulation considers a meta-
learner that guides the adaptation of a classifier for each user.
We consider that each user describes a task: discriminating

genuine genuine genuine forgery

genuine genuine genuine forgery

Fig. 3: Example of the meta-learning setup. Each user repre-
sents an episode, where Du is used for classifier adaptation
and D′u is used for meta-update.

TABLE I: Table of symbols

T Distribution of tasks (i.e. users)
Tu Task for user u
Dmeta-train Training set for the meta-learner
Dmeta-test Testing set for the meta-learner
Du Samples for weight adaptation for user u
D′
u Samples for meta-update for user u

Gu Genuine signatures for user u
Su Skilled forgeries for user u
θ Network parameters
θ
(u)
k Parameters adapted to user u after k descent steps
L Loss function for weight adaptation
L′ Loss function for meta-update

between genuine signatures (created by the user) and forgeries.
Figure 2 illustrates the data available for one task: we consider
a reference (support) dataset that is used for training a classifier
that can classify new queries as genuine or forgery.

In a meta-learning setting, we consider that training a
classifier for a particular user is guided by a meta-learner,
that leverages data from multiple tasks for learning. For
this we consider a dataset Dmeta-train, and then evaluate the
generalization performance on unseen users Dmeta-test.

We note that this approach has a direct correspondence to
previous work that used feature learning followed by WD
classification (section II), and here we make the association
between the terminology in the meta-learning research and
previous work on Signature Verification. In both cases we
use a separate set of users for feature learning (Dmeta-train
is analogous to the development set in section II), which is
then used for to train and test classifiers on a new set of
users (Dmeta-test is analogous to the exploitation set). The key
differences of meta-learning is that: (i) The loss optimized
for feature learning is directly related to the final objective
(separate genuine signatures and forgeries); (ii) training a
classifier for a new user is a lightweight process (a few gradient
descent iterations); (iii) not only the classifier, but the features
are also adapted for each user.

In the next section we formalize the problem of signature
verification as a meta-learning task.

A. Problem formulation

We consider that each user describes a task Tu ∈ T , where
the task consists in classifying a signature image as genuine
(created by the user) or forgery (not created by the user). A
collection of users therefore describes a distribution of tasks
T , and the aim of the meta-learner is to explore the structure
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Meta-learning

Generalization

Classifier
Adaptation

(Alg. 2)

Meta-Training
(Alg. 1)

Classification

Weights (  )

Adapted Weights (       )

Fig. 4: Overview of the meta-learning system for signature
verification.

present in this distribution. We consider a dataset Dmeta-train
containing tasks from T , that is used for meta-learning. For
each user we consider a set Du, that is used to adapt the
classifier, and a set D′u that is used for updating the meta-
learner. Lastly, to verify the generalization to unseen users,
we consider a set Dmeta-test, that contains data from a disjoint
set of users (Dmeta-train ∩Dmeta-test = ∅). Figure 3 illustrates the
meta-learning setup, and the symbols used in this paper are
listed in Table I for clarity.

B. Model Agnostic Meta-Learning for signature verification

In this work we propose an extended version of Model-
Agnostic Meta-Learning (MAML) [10], by considering dif-
ferent criteria for classifier adaptation and meta-learning. An
overview of the system can be seem in figure 4. We consider a
development set for meta-training, that consists in learning the
weights θ of a Convolutional Neural Network, that are highly
adaptable to new tasks. During generalization, for a user u,
a reference set Du is used to adapt the classifier to this user
(using K gradient descent steps) obtaining weights θ(u)K . This
adapted classifier is then used to classify a query image xq ,
obtaining P (y = 1|xq, θ(u)K ).

Algorithm 1 describes the full meta-training algorithm.
Meta-training is conducted in episodes (Figure 3). In each
episode, the classifier is adapted to a particular user using Du
(lines 7 to 10), and the adapted classifier is used to classify
the set D′u. The loss is then back-propagated through all
intermediate steps of the classifier adaptation (lines 11 and
12), and is used to update the meta-learner weights θ (line
14). Therefore, instead of having a feature representation that
is directly applicable for any user, they are learned to work
well for new users after K gradient descent steps on the user’s
signatures. For stability during training, we train on “mini-
batches” of episodes, by accumulating the gradients for M
episodes before updating θ.

Algorithm 1 Meta-Training algorithm

Input: M : Meta-batch size
Input: K: Number of gradient descent steps
Input: α, β Learning rates
Output: θ: Meta-learned weights

1: Randomly initialize θ
2: while not done do
3: Sample a batch of tasks {Tu}Mu=1 ∼ T
4: θgrad ← ~0
5: for u← 1 to M do
6: Sample Du . Genuine only
7: θ′0 ← θ
8: for k ← 1 to K do . Adapt weights to u
9: θ′k ← θ′k−1 − α∇θ′k−1

L(Du, θ′k−1)
10: end for
11: Sample D′u . Genuine and forgeries
12: θgrad ← θgrad +

1
M∇θL

′(D′u, θ′K)
13: end for
14: θ ← θ − βθgrad . Meta-update
15: end while

Figure 5 illustrates the classifier adaptation procedure. In
this work, we adapt the MAML algorithm to use different
loss functions for the classifier adaptation and the final loss
(used for the meta-update). In particular, we consider a loss
function L that only uses genuine signatures for the classifier
adaptation, and a loss function L′ that use both genuine
signatures and forgeries. Let Du = Gu ∪Gi 6=u be the training
set consisted of genuine signatures from the user (Gu) and
random forgeries (Gi 6=u). We consider the following loss for
classifier adaptation:

L(Du, θ) = −
1

|Gu|
∑
x:Gu

log(P (y|x, θ))

− 1

|Gi 6=u|
∑

x:Gi6=u

log(P (y|x, θ))
(2)

where |Gu| and |Gi 6=u| are the number of users in the sets,
which is used to correct for the imbalance between the two
classes.

Let D′u = G′u∪G′i 6=u∪S′u be the a disjoint set of signatures
for user u: genuine signatures (G′u), random forgeries (G′i6=u),
and (if available), skilled forgeries S′u. We define the loss
function for meta-update as follows:

L′(D′u, θ) = −
1

|G′u|
∑
x:G′u

log(P (y|x, θ(u)K ))

− 1

|G′i 6=u|
∑

x:G′i6=u

log(P (y|x, θ(u)K ))

− 1

|S′u|
∑
x:S′u

log(P (y|x, θ(u)K ))

(3)

On generalization, for a new user we first adapt the weights
to this user using a set of reference signatures Du, and then
classify a new query signature using the adapted weights.
Algorithm 2 describes the classifier adaptation to a new user.
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Fig. 5: Illustration of one iteration of meta-training for one task Tu. Starting with parameters θ, the weights are specialized
for the task in K gradient descent steps. Each step involves computing the loss (1), back-propagating the loss w.r.t to θ′k−1
(2) and updating the weights (3). For the meta-update, the loss L′ is backpropagated through the entire chain (from L′ back
to the initial θ), computing ∇θL′(D′u, θuK).

Algorithm 2 Classifier adaptation

Input: K: Number of gradient descent steps
Input: α Learning rate
Input: θ Meta-learned weights
Input: Du Reference set for user u
Output: θ′K : Weights adapted to the user after K steps

1: θ′0 ← θ
2: for k ← 1 to K do
3: θ′k ← θ′k−1 − α∇θ′k−1

L(Du, θ′k−1)
4: end for

We note that only the loss function L is used, and therefore
only genuine signatures are used when adapting a classifier
for a new user.

C. Meta-learning for one-class classification

The approach defined above can also be extended for one-
class classification, where the classifier adaptation is done with
only genuine signatures from the user of interest. This is easily
implemented by considering Du = Gu. It is worth noting that
similarity-based methods and one-class methods that involve
feature learning often suffer from the problem of collapsing
representations into a point [21]. This is often addressed by
adding a penalty in the loss function that requires dissimilar
items to be far apart in the feature space. In our formulation,
while the user’s classifier is only trained with data from one
class, we observe that training does not collapse to a single
point since the meta-training procedure directly optimizes the
performance on separating forgeries in D′u.

IV. EXPERIMENTAL PROTOCOL

We conducted most experiments on the GPDS-960 dataset
[22], that consists of 881 users, with 24 genuine signatures
per user and 30 skilled forgeries. We follow the same dataset
separation as previous work (figure 1), with users 350-881 as
Dmeta-train, 300-350 as Dmeta-val and users 0-300 as Dmeta-test. We
used the same pre-processing method from previous work [12],
[4], by removing the background noise using OTSU, centering
the images in a canvas of size 952× 1360 and resizing them
to 170× 242.

We analyze the impact of the hyperparameters in the clas-
sifier’s performance, measured in Dmeta-val. We consider the
experiments by varying these parameters:
• Number of gradient descent steps in the classifier adap-

tation: K ∈ {1, 5}
• One-class classification vs adaptation using genuine sig-

natures and random forgeries
• Fraction of users with skilled forgeries available for

training
• Performance as we vary the number of reference genuine

signatures
We compare the results on Dmeta-val with a baseline using

feature learning followed WD classification [4]. As in [4], we
evaluate each model with repeated random subsampling: we
randomly partition the validation set into training (Du) and
testing (D′u), repeating the experiment 10 times with different
partitions. We report the mean and standard deviation of the
metrics.

In all experiments, we train the meta-classifier for a total
of 100 epochs, considering a meta-batch size M = 4. We
consider an initial meta-learning rate β = 0.001, that is
reduced (with cosine annealing) to 10−5 by the last epoch. We
used early stopping, by keeping the meta-learner weights that
performed best in the validation set. Following [23], we used
Multi-Step Loss Optimization (MSL) for improving training
stability. For the first 20 epochs, instead of computing the loss
function L′ only after K steps (step 12 of algorithm 1), we
compute the loss function for all intermediate θ′k, and consider
a weighted average of the losses. In the first epoch the loss
using each θ′k contributes equally to the loss function, and the
weights are annealed to give more weight to the last step until
iteration 20, after which only the loss function at the final step
K contributes to the loss. We found this procedure effective
in stabilizing training (measured by the variation in validation
accuracy across epochs). We also attempted to use learnable
task learning rates (LSLR) described in [23] without success.
Empirically, we also noticed that when using only genuine
signatures the task learning rate needs to be larger than the
case where skilled forgeries are available for training. In our
experiments, if the fraction of users with skilled forgeries is
less than 10% we used a task learning rate α = 0.01, and a
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TABLE II: Base architecture used in this work

Layer Size
Input 1x150x220
Convolution (C1) 32x5x5
Max Pooling 32x5x5
Convolution (C2) 32x5x5
Pooling 32x5x5
Fully Connected (FC3) 1024
Fully Connected (FC4) 256
Fully Connected + Sigmoid 1

learning rate of α = 0.001 for the other experiments.

In order to evaluate the transferability of the features to
other operating conditions, we conducted experiments on other
datasets, (that were collected in different regions, and followed
different collection processes): MCYT-75 [24], CEDAR [25]
and Brazilian PUC-PR [26]. We conducted two experiments:
(i) use the meta-learner trained on GPDS directly for new
users of these datasets; (ii) train a meta-learner with data from
the four datasets. It is worth noting that, with the exception
of GPDS, the datasets are relatively small, with 55, 75 and
60 users for CEDAR, MCYT and Brazilian PUC-PR. We
observed that the formulations from this work require a large
amount of users for training, and for this reason, we conducted
10-fold cross validation. We divide each dataset in 10 folds (by
users), and for each run we consider 1 fold as meta-test, and
the remaining folders for meta-training and validation. As in
the previous experiments, we further use repeated subsampling
for evaluating the adaptation for the new users. In total, for
experiment (ii), we train 10 CNN models and perform 10
adaptations for each user. We report the mean error rates over
all runs, and the standard deviation across the 10 different
adaptations (each based on different train/test splits of the
repeated subsampling).

The CNN architecture used in the experiments is listed in
table II. We found that using a smaller network, compared
to previous work using feature learning followed by WD
classification, was successful in the meta-learning setting. This
network has a total of 1.4M weights and uses 0.1 GFLOPS
for forward propagation, while SigNet [4] has 15.8M weights
and uses 0.6 GFLOPS. That is, the CNN used in this work is
10x smaller and 6x times faster.

We evaluate the performance using the following metrics:
False Rejection Rate (FRR): the fraction of genuine signa-
tures rejected as forgeries; False Acceptance Rate (FARrandom
and FARskilled): the fraction of forgeries accepted as genuine
(considering random forgeries and skilled forgeries). We also
report the Equal Error Rate (EER): which is the error when
FAR = FRR. We considered two forms of calculating the EER:
EERglobal τ : using a global decision threshold and EERuser τ :
using user-specific decision thresholds. In both cases, to calcu-
late the Equal Error Rate we only considered skilled forgeries.
For FRR and FAR, we report the values with a threshold of 0.5
(i.e. if p(y = 1|x, θ′K) ≥ 0.5 we consider the model predicting
x as a genuine signature).

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
FAR

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1 
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EER: 3.48
EER: 2.86

EER: 4.60

EER: 17.03

Meta-learning One-class
Meta-learning Two-class
SigNet-F*
SigNet*

Fig. 6: ROC curves on Dmeta-val comparing the one-class and
two-class formulations with the baselines.

V. RESULTS

A. System design

In this section we report the results on Dmeta-val (GPDS
users 300-350), considering the experiments defined in section
IV. The objective is to evaluate different aspects of the
system, such as the number of gradient steps (that trades-off
computation complexity and accuracy), as well as investigate
the performance of the model in different data scenarios.

In a first experiment we consider the results of the one-
class formulation and the two-class formulation as we vary
the number of Random Forgeries used for classifier adaptation
(#RF). For this experiment, use used 5 genuine signatures
for classifier adaptation, and K = 5 gradient descent steps;
for meta-training we considered that skilled forgeries were
available on Dmeta-train (users 350-881). Note that for vali-
dation, no skilled forgeries were used for training. Table III
reports the results of these experiments. We observe similar
verification performance on the two formulations. Note that the
formulation using random forgeries is more computationally
expensive, as the classifier adaptation involves a larger batch of
images (e.g. computing the loss for one-class uses 5 images,
while for two-class with #RF=30 uses 35 images). We also
compare with a method using feature learning followed by
WD classification [4]. The entries denoted SigNet* used the
same approach proposed in [4], but using the CNN architecture
defined for this work (table II). We note that the meta-learning
formulation performed much better, while being a simpler
model (single model for all users). A comparison with the
SigNet CNN architecture from [4] is conducted in section V-B,
where we compare to the state-of-the-art. Figure 6 presents
ROC curves for the one-class formulation and the two-class
formulation with #RF=20, as well as the two baselines. We
consider average ROC curves over the 10 folds, where the
solid line indicates the mean FRR for a given value of FAR,
and the shaded area indicates one standard-deviation. Again,
we see improved performance compared to the baselines.

Figure 7 shows the results on verification performance as
we vary the number of gradient descent steps K. For each
value of K, we meta-trained a network and evaluate its
performance on Dmeta-val. We observed improved performance
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TABLE III: Performance on Dmeta-val with one-class and two-class formulations

Type #Gen #RF FRR FARrandom FARskilled EERglobal τ EERuser τ

SigNet* + WD 5 7434 10.48 (±2.24) 0.03 (±0.01) 24.67 (±0.99) 17.03 (±1.06) 13.17 (±0.94)
SigNet-F* + WD 5 7434 18.08 (±1.49) 0.16 (±0.04) 1.55 (±0.22) 4.6 (±0.59) 3.08 (±0.38)

Meta-learning
One-class 5 - 2.54 (±0.61) 2.74 (±0.93) 4.24 (±0.93) 3.48 (±0.57) 1.69 (±0.43)

Meta-learning
Two-class

5 5 2.82 (±0.59) 1.98 (±0.55) 4.18 (±0.48) 3.8 (±0.48) 2.04 (±0.41)
5 10 5.1 (±0.99) 1.94 (±0.27) 2.66 (±0.76) 3.56 (±0.57) 1.85 (±0.57)
5 20 2.84 (±0.97) 1.98 (±0.48) 3.1 (±0.83) 2.86 (±0.59) 1.78 (±0.27)
5 30 2.62 (±0.82) 2.48 (±0.39) 3.46 (±0.62) 3.17 (±0.37) 1.4 (±0.48)

1 2 3 4 5 10
K
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4.0
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Fig. 7: Performance on Dmeta-val as we vary the number of
update steps K.
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Fig. 8: Performance on Dmeta-val as we vary the number of
users in Dmeta-train for which skilled forgeries are available.

with larger number of steps, but with diminishing returns. We
note a high variance of the errors in these experiments, and
therefore we cannot determine a particular K as being optimal.
As we increase the number of steps, we also increase the
computational cost. If we consider that forward propagation
and backward propagation have similar cost, the classifier
adaptation for a new user takes 2K the time for a single
forward pass. A higher K also requires more memory (in the
order of 2K) during meta-training, since the whole update
sequence needs to be stored in memory in order to compute
the gradient for meta-update (as can be seen in figure 5).

In figures 8 and 9 we analyze the impact in performance
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(a) One-class
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Fig. 9: Performance on Dmeta-val as we vary the number of
users available for meta-training. (a): one-class formulation;
(b) two-class formulation.

as we vary the size of the Dmeta-train set. As noted in section
III-B, if skilled forgeries from a subset of users are available,
we can incorporate them into the meta-update loss function
L′. In this experiment we considered that Dmeta-train contains
all 531 users, and vary the number of users for which skilled
forgeries are available. For each case, we build a dataset
consisting of genuine signatures for all users and skilled
forgeries for the selected users, and trained a model. Figure
8 shows the performance as we vary the number of users
for which skilled forgeries as available. We re-iterate that we
evaluate the performance on a disjoint set of users (Dmeta-val)
for which only genuine signatures are used. We observed that
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TABLE IV: Comparison with state-of-the art on the GPDS
dataset (errors in %)

Reference Type Dataset #samples
per user Features EER

Hu and Chen [27] WI GPDS-150 10 LBP, GLCM, HOG 7.66
Guerbai et al [5] WD GPDS-160 12 Curvelet transform 15.07
Serdouk et al [28] WD GPDS-100 16 GLBP, LRF 12.52
Yilmaz [3] WD GPDS-160 5 LBP, HOG, SIFT 7.98
Yilmaz [3] WD GPDS-160 12 LBP, HOG, SIFT 6.97
Soleimani et al [29] WI GPDS-300 10 LBP 20.94
Hafemann et al [4] WD GPDS-300 5 SigNet-F (global τ ) 5.25 (±0.15)
Hafemann et al [4] WD GPDS-300 5 SigNet-F (user τ ) 2.42 (±0.24)
Hafemann et al [4] WD GPDS-300 12 SigNet-F (global τ ) 3.74 (±0.15)
Hafemann et al [4] WD GPDS-300 12 SigNet-F (user τ ) 1.69 (±0.18)
Souza et al [30] WI GPDS-300 5 SigNet (global τ ) 9.05 (±0.34)
Souza et al [30] WI GPDS-300 5 SigNet (user τ ) 4.40 (±0.34)
Souza et al [30] WI GPDS-300 12 SigNet (global τ ) 7.96 (±0.26)
Souza et al [30] WI GPDS-300 12 SigNet (user τ ) 3.34 (±0.22)

Present work WI/WD GPDS-300 5 MAML one-class (global τ ) 5.52 (±0.20)
Present work WI/WD GPDS-300 5 MAML one-class (user τ ) 3.35 (±0.13)
Present work WI/WD GPDS-300 5 MAML two-class (global τ ) 5.16 (±0.19)
Present work WI/WD GPDS-300 5 MAML two-class (user τ ) 2.94 (±0.20)
Present work WI/WD GPDS-300 12 MAML one-class (global τ ) 4.70 (±0.11)
Present work WI/WD GPDS-300 12 MAML one-class (user τ ) 2.93 (±0.27)
Present work WI/WD GPDS-300 12 MAML two-class (global τ ) 4.39 (±0.18)
Present work WI/WD GPDS-300 12 MAML two-class (user τ ) 2.68 (±0.17)

the meta-learning formulation of the problem is well suited
to incorporating information from skilled forgeries (when it
is available), and this generalizes well to unseen users, for
which we only have genuine signatures. However, we observed
that the performance is not very good when there are only
genuine signatures for meta-training: the one-class formulation
achieves 14.15% EER when only genuine signatures are
available, and 3.48% EER when skilled forgeries are available
for all 531 users in meta-training.

In figure 9, we evaluate the performance of the system as
we vary the number of users in Dmeta-train. We also consider 4
levels of availability of skilled forgeries in the meta-training
set: 0% (genuine only), 10%, 50% and 100%, where the
percentages refer to the number of users for which skilled
forgeries are available (e.g. 10% with 100 users means that
forgeries for 10 users are considered, where the remaining 90
users have only genuine signatures). For a given number of
users and skilled forgery percentage, we construct a dataset
with randomly selected users (taken from the 531 users in the
development set), with genuine signatures from all the selected
users, and skilled forgeries for a fraction of the users. We then
use this dataset for meta-training a model, and evaluate its
performance on Dmeta-val. We observed improved performance
both as more users are available for meta-training, as well as
when more knowledge of skilled forgeries is available. Most
surprisingly, we observed that for the two-class formulation,
a classifier trained with 100 users with 100% forgeries (i.e.
forgeries for every user in meta-train) performed better than a
model trained with 531 users with forgeries for only 100 users
(comparing figures 9b and 8): 6.07% EER vs 9.14% EER. We
re-iterate that this measures the performance on discriminate
genuine signatures and skilled forgeries, and the model that
has access to more users (with the same amount of users with
skilled forgeries) has better performance on discriminating
random forgeries, since its optimization consisted mostly of
this problem.

B. Comparison with the state-of-the-art

We now compare our results with the state-of-the-art in the
GPDS-300 dataset. For these comparisons, we considered a
model trained with the one-class formulation, and a model
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Fig. 10: Performance on GPDS-300 as we vary the number
reference signatures available for each user. (a): one-class
formulation; (b) two-class formulation.

trained with the two-class formulation, with r = 30 forgeries.
In both cases, we used the whole dataset Dmeta-train for training
the meta-classifier, and used 5 genuine signatures for classifier
adaptation, with k = 5 updates. While training was conducted
with 5 reference signatures, we evaluate the performance of
the system with different number of references.

Table IV compares our results with the state-of-the-art.
We observe an improved performance compared to other WI
systems, achieving 5.16% EER (global τ ) with 5 reference
signatures, compared to 9.05% from [30]. Comparing to WD
systems, we observed similar performance in some scenarios
(5 reference signatures), and worse results otherwise. With
12 reference signatures, the proposed system obtained 4.39%
EER (global τ ), compared to 3.74 for the WD system [4].
However, the proposed system is more scalable, as a single
model is stored for all users.

Figure 10 shows the performance on GPDS-300 as we vary
the number of reference samples available for each user. As
commonly observed in WD systems (e.g. [4]), the performance
greatly improves as more reference samples are available for
training: For the one-class formulation, performance with a
single reference is 9.09% EER (global τ ) and 5.81% EER
(user τ ). With 12 references, we obtain 4.70% EER (global
τ ) and 2.93% EER (user τ ).



9

TABLE V: Transfer performance to the other datasets

Target Dataset Training Dataset EER (global) EER (user)

MCYT GPDS 15.48 (± 1.00) 12.54 (± 1.86)
All 15.37 (± 0.97) 12.77 (± 0.46)

CEDAR GPDS 15.98 (± 1.09) 12.07 (± 1.01)
All 10.69 (± 1.76) 8.02 (± 1.22)

Brazilian GPDS 8.05 (± 0.95) 4.83 (± 1.07)
All 8.55 (±0.55) 6.7 (± 0.87)

TABLE VI: Comparison with the state-of-the-art in MCYT
Reference Type # Samples Features EER
Wen et al.[31] WD 5 RPF 15.02
Vargas et al.[32] WD 5 LBP 11.9
Vargas et al.[32] WD 10 LBP 7.08
Ooi et al[33] WD 5 DRT + PCA 13.86
Ooi et al[33] WD 10 DRT + PCA 9.87
Soleimani et al.[29] WD 5 HOG 13.44
Soleimani et al.[29] WD 10 HOG 9.86
Hafemann et al.[4] WD 5 SigNet (user τ ) 3.58 (± 0.54)
Hafemann et al.[4] WD 10 SigNet (user τ ) 2.87 (± 0.42)
Present Work WI/WD 5 MAML one-class (global τ ) 15.37(± 0.97)
Present Work WI/WD 5 MAML one-class (user τ ) 12.77(± 0.46)
Present Work WI/WD 10 MAML one-class (global τ ) 14.50(± 0.77)
Present Work WI/WD 10 MAML one-class (user τ ) 12.44(± 0.97)

C. Transfer to other datasets

We now consider results on three other datasets: MCYT,
CEDAR and the Brazilian PUC-PR. Table V shows the
performance in two scenarios: (i) meta-learner trained only
in GPDS, with its generalization to new operating conditions
and (ii) meta-learned trained on all four datasets (using 10-
fold cross validation, as described in section IV). While
the method generalized well to unseen GPDS users, we see
that the generalization performance to other datasets is much
worse. Furthermore, we notice that even when training with
a subset of users from all datasets, the performance does not
improve for all datasets. A possible explanation is that the
GPDS dataset is still much larger (10 times larger than the
others) and dominates training. Overall, this suggests that the

TABLE VII: Comparison with the state-of-the-art in CEDAR
Reference Type # Samples Features AER/EER
Chen and Srihari[34] WD 16 Graph Matching 7.9
Kumar et al.[35] WI 1 morphology 11.81
Kumar et al.[6] WI 1 Surroundness 8.33
Bharathi and Shekar[36] WD 12 Chain code 7.84
Guerbai et al.[5] WD 4 Curvelet transform 8.7
Guerbai et al.[5] WD 8 Curvelet transform 7.83
Guerbai et al.[5] WD 12 Curvelet transform 5.6
Hafemann et al.[4] WD 4 SigNet (SVM) 5.87 (± 0.73)
Hafemann et al.[4] WD 8 SigNet (SVM) 5.03 (± 0.75)
Present Work WI/WD 4 MAML one-class (global τ ) 11.06(± 1.12)
Present Work WI/WD 4 MAML one-class (user τ ) 8.27(± 1.45)
Present Work WI/WD 8 MAML one-class (global τ ) 10.21(± 1.21)
Present Work WI/WD 8 MAML one-class (user τ ) 7.07(± 1.08)

TABLE VIII: Comparison with the state-of-the-art on the
Brazilian PUC-PR dataset (errors in %)

Reference Type #samples Features AERgenuine + skilled/EER
Bertolini et al. [37] WI 15 Graphometric 8.32
Batista et al. [38] WD 30 Pixel density 10.5
Rivard et al. [9] WI 15 ESC + DPDF 11.08
Eskander et al. [7] WD 30 ESC + DPDF 10.67
Hafemann et al.[4] WD 5 SigNet (user τ ) 2.92 (± 0.44)
Hafemann et al.[4] WD 15 SigNet (user τ ) 2.07 (± 0.63)
Souza et al.[30] WI 5 SigNet (global τ ) 5.95 (± 0.68)
Souza et al.[30] WI 5 SigNet (user τ ) 2.58 (± 0.72)
Souza et al.[30] WI 15 SigNet (global τ ) 5.13 (± 0.23)
Souza et al.[30] WI 15 SigNet (user τ ) 1.70 (± 0.40)
Present Work WI/WD 5 MAML one-class (global τ ) 8.55 (± 0.55)
Present Work WI/WD 5 MAML one-class (user τ ) 6.70(± 0.87)
Present Work WI/WD 15 MAML one-class (global τ ) 6.93(± 0.73)
Present Work WI/WD 15 MAML one-class (user τ ) 5.74(± 0.84)

proposed method requires a large amount of data from the
target application, and is sensitive to changes in operating
conditions. Finally, tables VI, VII and VIII compares de results
with the state-of-the-art on MCYT, CEDAR and Brazilian
PUC-PR, respectively.

It is worth noting that the meta-learning does generalize
to new users of the GPDS dataset, as verified in sections
V-A and V-B, since we evalute in a Dmeta-test that contains
a disjoint set of users that was used to train the meta-learner.
What we observed, however, is that this meta-learned does not
transfer well to other datasets. This has been observed more
recent work with meta-learning [39], that shows that although
these models perform well for new classes of the same
distribution (e.g. same dataset), the performance deteriorates
when evaluating on new datasets (i.e. a shift in the task-
distribution). This is still an active area of research in meta-
learning.

VI. CONCLUSION

In this paper we proposed to formulate Signature Verifi-
cation as a meta-learning problem, where each user defines
a task. This formulation enables directly optimizing for the
objective (separating genuine signatures and forgeries) even
when forgeries are not available for all users. The resulting
system is scalable and yet adaptable for individual users:
a single meta-classifier is learned and stored, and for the
verification of a given signature, the classifier is adapted
to the claimed user and subsequently used for verification.
The proposed method is also able to naturally incorporate
new reference signatures for a user, and enable adapting the
representation as more training data is available. The draw-
backs of this solution are twofold: increased computational
cost and worse transferability to new conditions. The method
is 2K slower, when using K updates for the classification
adaptation, although it allows the option to trade storage and
computational cost - the adapted weights for a given user can
be stored for faster classification.

In our experiments with the GPDS-960 dataset, the proposed
method obtains better results than WI systems in the literature,
and approach the performance of WD systems, especially
when few samples are available for training. With 5 reference
signatures, the proposed method obtains 5.16% EER (using
a global threshold), compared to 9.05% of a WI system and
5.25% of a WD system. For a larger number of references the
WD system still performs better, but the gap in performance
is greatly reduced. Considering 12 reference signatures, the
method obtains 4.39% EER (with a global threshold), vs
3.74% for the WD system, while being more scalable (single
meta-classifier) Our experiments transferring the meta-learner
to other datasets show reduced performance, highlighting the
need for better adaptation to new conditions, which will be
explored in future work. Future work also includes considering
a dynamic scenario, where the meta-classifier is updated as
new training data is available.
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[3] M. B. Yılmaz and B. Yanıkoğlu, “Score level fusion of classifiers in
off-line signature verification,” Information Fusion, vol. 32, Part B, pp.
109–119, Nov. 2016.

[4] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Learning features
for offline handwritten signature verification using deep convolutional
neural networks,” Pattern Recognition, vol. 70, pp. 163–176, Oct. 2017.

[5] Y. Guerbai, Y. Chibani, and B. Hadjadji, “The effective use of the
one-class SVM classifier for handwritten signature verification based
on writer-independent parameters,” Pattern Recognition, vol. 48, no. 1,
pp. 103–113, Jan. 2015.

[6] R. Kumar, J. D. Sharma, and B. Chanda, “Writer-independent off-line
signature verification using surroundedness feature,” Pattern Recognition
Letters, vol. 33, no. 3, pp. 301–308, Feb. 2012.

[7] G. Eskander, R. Sabourin, and E. Granger, “Hybrid writer-independent-
writer-dependent offline signature verification system,” IET Biometrics,
vol. 2, no. 4, pp. 169–181, Dec. 2013.

[8] H. Rantzsch, H. Yang, and C. Meinel, “Signature embedding: Writer
independent offline signature verification with deep metric learning,” in
Advances in Visual Computing, ser. Lecture Notes in Computer Science.
Springer International Publishing, pp. 616–625, DOI: 10.1007/978-3-
319-50832-0 60.

[9] D. Rivard, E. Granger, and R. Sabourin, “Multi-feature extraction and
selection in writer-independent off-line signature verification,” Interna-
tional Journal on Document Analysis and Recognition, vol. 16, no. 1,
pp. 83–103, 2013.

[10] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning, vol. 70. International
Convention Centre, Sydney, Australia: PMLR, 06–11 Aug 2017, pp.
1126–1135.

[11] J. Bromley, I. Guyon, Y. LeCun, E. Siickinger, and R. Shah, “Signature
Verification using a “Siamese” Time Delay Neural Network,” 1994.

[12] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Writer-independent
feature learning for offline signature verification using convolutional
neural networks,” in Neural Networks, The 2016 International Joint
Conference on, 2016.

[13] L. G. Hafemann, L. S. Oliveira, and R. Sabourin, “Fixed-sized repre-
sentation learning from offline handwritten signatures of different sizes,”
International Journal on Document Analysis and Recognition (IJDAR),
pp. 1–14, 2018.

[14] E. N. Zois, M. Papagiannopoulou, D. Tsourounis, and G. Economou,
“Hierarchical Dictionary Learning and Sparse Coding for Static Signa-
ture Verification,” p. 11.

[15] E. N. Zois, I. Theodorakopoulos, D. Tsourounis, and G. Economou,
“Parsimonious Coding and Verification of Offline Handwritten Sig-
natures,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Jul. 2017, pp. 636–645.

[16] J. Schmidhuber, “Evolutionary principles in self-referential learning,”
PhD Thesis, Technische Universität München, München, 1987.

[17] Y. Bengio, S. Bengio, and J. Cloutier, “Learning a synaptic learning
rule,” in IJCNN-91-Seattle International Joint Conference on Neural
Networks, vol. ii, Jul. 1991, pp. 969 vol.2–.

[18] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based hyperpa-
rameter optimization through reversible learning,” in Proceedings of the
32nd International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille,
France: PMLR, 07–09 Jul 2015, pp. 2113–2122.

[19] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing Neural
Network Architectures using Reinforcement Learning,” in International
Conference on Learning Representations, 2017.

[20] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” 2016.

[21] P. Perera and V. M. Patel, “Learning Deep Features for One-Class
Classification,” arXiv:1801.05365 [cs], Jan. 2018.

[22] J. Vargas, M. Ferrer, C. Travieso, and J. Alonso, “Off-line Handwritten
Signature GPDS-960 Corpus,” in Document Analysis and Recognition,
9th International Conference on, vol. 2, Sep. 2007, pp. 764–768.

[23] A. Antoniou, H. Edwards, and A. Storkey, “How to train your MAML,”
in International Conference on Learning Representations, 2019.

[24] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-
Zanuy, V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza, C. Vivaracho, and
others, “MCYT baseline corpus: a bimodal biometric database,” IEE
Proceedings-Vision, Image and Signal Processing, vol. 150, no. 6, pp.
395–401, 2003.

[25] M. K. Kalera, S. Srihari, and A. Xu, “Offline signature verification and
identification using distance statistics,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 18, no. 07, pp. 1339–1360,
Nov. 2004.

[26] C. Freitas, M. Morita, L. Oliveira, E. Justino, A. Yacoubi, E. Lethelier,
F. Bortolozzi, and R. Sabourin, “Bases de dados de cheques bancarios
brasileiros,” in XXVI Conferencia Latinoamericana de Informatica,
2000.

[27] J. Hu and Y. Chen, “Offline Signature Verification Using Real Adaboost
Classifier Combination of Pseudo-dynamic Features,” in Document
Analysis and Recognition, 12th International Conference on, Aug. 2013,
pp. 1345–1349.

[28] Y. Serdouk, H. Nemmour, and Y. Chibani, “New gradient features
for off-line handwritten signature verification,” in 2015 International
Symposium on Innovations in Intelligent SysTems and Applications
(INISTA), Sep. 2015, pp. 1–4.

[29] A. Soleimani, B. N. Araabi, and K. Fouladi, “Deep Multitask Metric
Learning for Offline Signature Verification,” Pattern Recognition Letters,
vol. 80, pp. 84–90, Sep. 2016.

[30] V. L. F. Souza, A. L. I. Oliveira, and R. Sabourin, “A Writer-Independent
Approach for Offline Signature Verification using Deep Convolutional
Neural Networks Features,” in 2018 7th Brazilian Conference on Intel-
ligent Systems (BRACIS), Oct. 2018, pp. 212–217.

[31] J. Wen, B. Fang, Y. Y. Tang, and T. Zhang, “Model-based signature ver-
ification with rotation invariant features,” Pattern Recognition, vol. 42,
no. 7, pp. 1458–1466, Jul. 2009.

[32] J. F. Vargas, M. A. Ferrer, C. M. Travieso, and J. B. Alonso, “Off-
line signature verification based on grey level information using texture
features,” Pattern Recognition, vol. 44, no. 2, pp. 375–385, Feb. 2011.

[33] S. Y. Ooi, A. B. J. Teoh, Y. H. Pang, and B. Y. Hiew, “Image-based
handwritten signature verification using hybrid methods of discrete
Radon transform, principal component analysis and probabilistic neural
network,” Applied Soft Computing, vol. 40, pp. 274–282, 2016.

[34] S. Chen and S. Srihari, “A New Off-line Signature Verification Method
based on Graph,” in 18th International Conference on Pattern Recogni-
tion (ICPR’06), vol. 2, 2006, pp. 869–872.

[35] R. Kumar, L. Kundu, B. Chanda, and J. D. Sharma, “A Writer-
independent Off-line Signature Verification System Based on Signature
Morphology,” in Proceedings of the First International Conference on
Intelligent Interactive Technologies and Multimedia, ser. IITM ’10. New
York, NY, USA: ACM, 2010, pp. 261–265.

[36] R. Bharathi and B. Shekar, “Off-line signature verification based on
chain code histogram and Support Vector Machine,” in 2013 Inter-
national Conference on Advances in Computing, Communications and
Informatics (ICACCI), Aug. 2013, pp. 2063–2068.

[37] D. Bertolini, L. S. Oliveira, E. Justino, and R. Sabourin, “Reducing
forgeries in writer-independent off-line signature verification through
ensemble of classifiers,” Pattern Recognition, vol. 43, no. 1, pp. 387–
396, Jan. 2010.

[38] L. Batista, E. Granger, and R. Sabourin, “Dynamic selection of genera-
tive–discriminative ensembles for off-line signature verification,” Pattern
Recognition, vol. 45, no. 4, pp. 1326–1340, Apr. 2012.

[39] E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, K. Xu, R. Goroshin,
C. Gelada, K. Swersky, P.-A. Manzagol, and H. Larochelle, “Meta-
dataset: A dataset of datasets for learning to learn from few examples,”
arXiv preprint arXiv:1903.03096, 2019.

Luiz G. Hafemann received his B.S. degree in
Computer Science in 2008 and his M.Sc. degree in
Informatics in 2014, both from the Federal Univer-
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Québec, in Montreal, QC, Canada. He is currently a
researcher at Sportlogiq, applying computer vision
models for sports analytics. His current interests
include meta-learning, adversarial machine learning
and group activity recognition.



11

Luiz S. Oliveira received his B.S. degree in Com-
puter Science from Unicenp, Curitiba, PR, Brazil,
the M.Sc. degree in electrical engineering and in-
dustrial informatics from the Centro Federal de
Educação Tecnológica do Paraná (CEFET-PR), Cu-
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