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Abstract—This work describes a new oracle based Dynamic
Ensemble Selection (DES) method in which an Ensemble of
Classifiers (EoC) is selected to predict the class of a given test
instance (xt). The competence of each classifier is estimated on a
local region (LR) of the feature space (Region of Competence -
RoC) represented by the most promising k-nearest neighbors (or
advisors) related to xt according to a discrimination index (Ð)
originally proposed in the Item and Test Analysis (ITA) theory.
The Ð value is used to better define the advisors of the RoC since
they will suggest the classifiers (local oracles) to compose the
EoC. A robust experimental protocol based on 30 classification
problems and 20 replications have shown that the proposed DES
compares favorably with 15 state-of-the-art dynamic selection
methods and the combination of all classifiers in the pool.

Index Terms—Discrimination Index, Classical Test Theory,
Dynamic Classifier Selection.

I. INTRODUCTION

Multiple Classifier Systems (MCS) have been advocated as
an interesting alternative to monolithic solutions in which a
single classifier must deal with the large variability inherent
to most of pattern recognition problems. In such a scenario,
different strategies have been studied to select during the op-
erational phase of the system the most promising classifier(s)
given a test instance, producing very interesting MCS variants
named Dynamic Classifier Selection (DCS) and Dynamic
Ensemble Selection (DES) methods. The main difference
between DCS and DES methods is that, in the first only
one classifier is selected, and in the second, an ensemble of
classifiers is chosen. Thus, in the case of DES, to predict a
class for a given test instance, the output of each selected
classifier must be combined by using fusion rules [1]. One
may find in [2] a taxonomy about the main dynamic selection
methods (DCS and DES) available in the literature, which
was recently updated in [3]. For sake of simplicity, Dynamic
Selection (DS) will be used in this paper to refer both DCS
and DES methods.

The success of a DS method depends on the adoption
of an efficient criterion to evaluate the competence of the
classifiers in recognizing the test pattern to be labeled. In the
aforementioned taxonomy, the DS methods were categorized
according to the criterion used to compute the competence
of each classifier. We can find methods based on individual
competence and those which consider the relationship between
the classifiers that compose the pool. In fact, the competence
measures for DS has been under investigation for years [4].
Many studies have focused on accuracy [5], diversity [6],
probability information [7], oracle information [8], complexity
measures [9], and meta-features such as complexity [9] and
instance hardness [10]. However, the search for an efficient
criterion to evaluate the competence of the classifiers is still
an open problem.

With this in mind, we propose a new oracle-based DES
method in which a discrimination index (Ð) [11] is used to
better define the region of competence (RoC) in the feature
space formed by local advisors (nearest neighbors of the
test instance) which are responsible to indicate the classifiers
(nearest oracles, as suggested in [8]) to compose the ensemble
for a given test instance. This discrimination index is originally
defined in the literature of Item and Test Analysis (ITA)
belonging to the Classical Test Theory (CTT), as explained in
section III of this paper. Originally, a professor (or examiner)
can use this kind of index to rank questions in order to select
the most promising ones to evaluate its students in an exam.
Here, instead of professor, questions, and students; we have a
competence measure, the set of advisors (nearest neighbors of
xt) and the classifiers, respectively.

Basically, our hypothesis is that by selecting the local
advisors with the highest discrimination index Ð we can
better estimate the classifier´s competence and, consequently,
improve the DS accuracy. To evaluate our hypothesis, we have
performed a set of experiments considering 30 classification
problems, 20 replications and a comparison of the proposed
method against 15 state-of-the-art DS methods.978-1-5386-5541-2/18/$31.00 ©2018 IEEE



This paper is organized as follows: sections II and III show a
study of concepts involved with this work: Dynamic Ensemble
Selection and Discrimination index. Section IV presents the
proposed method. The experimental results and statistical
comparisons are shown in section V. Finally, section VI
presents our conclusions and future work.

II. MULTIPLE CLASSIFIER SYSTEMS

In [2] the authors describe an MCS as composed of 3
possible modules, as follows: pool generation, selection and
fusion.

A. Pool generation
The first module of an MCS is responsible to build a pool of

classifiers C. The pool consists of a set of monolithic classifiers
ci that can be trained using different strategies to generate
diversity, such as the Bagging method [12] used in this work.
The authors in [3] describe that we can generate a pool of
diverse classifiers by considering different initializations, pa-
rameters, architectures, base classifiers (pools heterogeneous),
training or feature sets. In fact, the classifiers need to be
diverse, making different errors. Such a characteristic usually
contributes to the pool accuracy. In addition, the pool can also
be composed of weak classifiers as reported in [13], in which
the author observed that a strong classification can be obtained
from the combination of weak classifiers.

B. Selection
The selection module is facultative in an MCS, i.e., all

classifiers can be combined. However, usually, a selection
process can contribute to improve the classification results.
The selection process can be static or dynamic. The former
performs the selection during the training phase of the MCS,
using the same classifier(s) for all testing samples, while the
later executes the selection during the testing phase of the
MCS, providing specific classifier(s) for each test sample xt.
Our focus in this work is on dynamic selection (DS) methods,
which can either select a single classifier or an ensemble. The
Dynamic Classifier Selection (DCS) methods choose the most
competent classifier to be the one that will predict the label
of the test instance.

The Dynamic Ensemble Selection (DES) selects, for each
xt, an Ensemble of Classifiers EoCt ⊆ C that maximizes
the competence measure θ (individually or in a group). The
rationale behind the DES approaches is to avoid the risk related
to the selection of just one classifier, distributing the risk
of this over-generalization by choosing a group of classifiers
instead of one individual classifier for each test pattern [8].
With respect to DS approaches, we can consider 3 important
steps:

a) Region of Competence (RoC) Definition: the first step
consists of defining the local region (LRt) for instance xt in
the feature space in which the competence of the classifiers
will be estimated, normally named as region of competence
(RoCt). The RoCt is usually represented by the k-nearest
neighbors of the test instance in a validation set, named in
[3] as dynamic selection dataset (DSEL).

b) Classifiers’ Competence (θ) Estimation: after the
RoCt definition, it is necessary to compute competence
measure θ for each classifier ci ∈ C. As described in [2]
and [3] the θ can be estimated considering each classifier
individually, or in groups. For the first case, each classifier
can be evaluated through the use of different sources of infor-
mation like ranking, accuracy, probability, classifier behavior,
oracle information, data complexity, and meta-learning based
measures. The strategies based on groups of classifiers evaluate
the relevance of each classifier together with others, i.e., the
performance of the whole set is considered for each classifier
added in the group. In the group strategy, we have measures of
competence based on diversity, data handling, and ambiguity.

c) Selection Strategy: the last step in a DS method
regards the strategy used to select the classifiers based on
the information provided by the defined competence measure.
It varies according to the information provided by a simple
ranking [14] in which the best classifier(s) is(are) selected to
the use of a meta-learning in which a classifier is used to make
the selection [10].

C. Fusion

The third phase of an MCS consists in applying the selected
classifiers to recognize a given testing pattern. In cases where
all classifiers are used (without selection) or when an ensemble
is selected, a fusion strategy is necessary. For the integration
of the classifier outputs, there are different schemes available
in the literature. Complete details regarding the combination
methods can be found in Kittler et al. [1].

III. ITEM AND TEST ANALYSIS

This section shows some background of the application of
Item and Test Analysis (ITA) present on Classical Test Theory
(CTT) [15]–[17]. The ITA is used to rank educational tests
used to evaluate the student knowledge in a classroom. In this
study, we have considered dichotomous tests within ITA. This
kind of tests are characterized by having questions with only
one true answer and one or several false answers, so that the
student either hits or misses the question.

Suppose that we have a test answered by M students,
containing N questions. Let i = {1, . . . ,M} students, and
j = {1, . . . , N} question, the Response (R) of each student i
to each question j, is given by:

Rij =

{
1 if correct
0 otherwise

(1)

From ITA, an important measure is the ability of a student
for an item as denoted in Eq. (2). The student’s ability measure
(ai) varies within the range [0, 1] and shows that closer to 1,
more competent is the student.

ai =

∑N
j Rij

N
(2)



A. Discrimination Index Ð

It is important to note that even the ITA having the same
name within Classical Test Theory (CTT) and Item Response
Theory (IRT), it is calculated and analyzed differently in each
theory. This work focuses on ITA within the CTT, which
provides a Discrimination index (Ð) for each question. In other
words, a measure to calculate how effective a question could
be to distinguish students with high performance (Hp) from
those with low performance (Lp). According to Matlock [11],
the number of students in each group is equal to P = 0.27
(proportion) of the total of students. This Ð measure is
important because for an exam, the teacher needs to know
the question that most separates the students and then infer
some analysis. The discriminant calculation in CTT is done in
4 steps [11], as follows:

1) rank the students by their ability: Eq. (2),
2) separate the two extreme groups: Hp and Lp,
3) for each question j, compute the number of successes

(sum of hits) that each group obtained, being: Shj and
Slj , the successes of Hp and Lp group respectively,

4) compute the discrimination index Ðj as the difference
of the success of two groups {Shj , Slj} divided by the
number of people in the largest group L:

Ðj =
Shj − Slj

L
(3)

In the second step, the proportion P = 0.27 is used accord-
ing to Wiersma and Jurs [18], because they have shown that
this value will maximize the difference in normal distributions
while providing enough cases for analysis. This is confirmed
in [11], where the authors pointed out that it is necessary to
have enough students in each group to promote stability.

The value Ðj varies between [-1 and 1]. A value closer to
1 means a greater discrimination power of the item. Negative
values would indicate that students with low performance
matched that question more than the students in the other
group. As this should not happen, usually in situations where
the value of Ðj is negative, the question should be reviewed
or canceled.

According to Ebel & Frisbie [19], Ð values greater than
0.4 are considered good. Values between 0.3 and 0.39 are
reasonable. Values between 0.20 and 0.29 are items that
require revision and less than 0.19 need to be revised or should
be deleted.

B. Mapping Item Analysis to Dynamic Selection

The main inspiration for this work was the idea that CTT
provides a simple way to calculate (among other measures): 1)
the ability of students and 2) a way of measuring how much an
item can discriminate (separate) the students. Bringing these
concepts into DS, we can make the following associations:

• classifier → student: active element in the system that
provides answers (correct or incorrect) for questions (or
items),

• classifier competence→ student ability to answer a given
question (item),

• pool of classifiers → classroom, or a group of students,
• DSEL (validation dataset) → database of questions,
• test instance xt → the specific question that professor

wants to verify on his students,
• each instance in DSEL→ an item (question) in an exam,
• region of competence→ the questions in an exam related

to a specific problem (xt) applied to the students, or in
other words, the professor will select only those questions
that are related to a specific subject (xt).

Considering these associations we can calculate Ð for each
instance xt inside region of competence RoCt and verify
which one has more power to distinguish the classifiers
available in the pool. In this way, the main idea is to select
advisors that have a high Ð, as described in section IV.

IV. PROPOSED DES METHOD

This section describes the proposed oracle-based DES
method that uses a DIScrimination index, named DISi. Our
method comes from ITA (see section III) to evaluate the
importance of each element in the RoCt of a given test
instance xt. Inspired by the KNORA-Union method [8], we
have adapted it to consider a mechanism to evaluate the
importance of the local advisors used to define the classifiers
to compose the ensemble. Since the proposed method can be
considered as the selection module of an MCS, in this section
we focus on the description of the main aspects related to how
we dynamically select the classifiers to compose the ensemble
EoCt given a test instance xt.

A. RoC Definition

The definition of the region of competence RoCt for a given
test instance xt relies on the discrimination index (Ð) from
ITA (section III). In the proposed method, the methodology
for selecting the best instances to form the RoCt considering
Ð, starts with a local region (LRt) of size 2× k (or 2k), that
is, the double of the k-nearest neighbors will be taken initially,
however, after the Ð calculation, only the k most discriminant
instances are selected to compose RoCt.

Taking the instances with best Ð among the k-nearest
neighbors of xt in DSEL means that we are providing in-
stances that better separate the classifiers into two groups: the
good ones (local high performance) and the bad ones (local
low performance) (section III) i.e., the competent ones and
the incompetent ones. We expect that these instances having
higher Ð are the best choice to suggest the classifiers in the
oracle-based schema. In such a schema, for each instance in
DSEL we have the most promising classifiers (those which
correctly classify it). Acting as a local advisor, each nearest
neighbor of xt can suggest the classifiers to be used [2]. By
adding a measure of discrimination in each nearest neighbor
of xt, it is possible to better improve the quality of the RoCt
based on which the classifiers will be selected.

Algorithm 1 shows the steps to calculate Ð and the choice
of the most discriminating instances in the RoCt. Initially,
the algorithm receives the pool of classifiers C, the dynamic
selection dataset DSEL (validation set in which for each



instance we know the best classifiers), the test instance xt
and the number of neighbors k. It starts by defining the local
region LRt which corresponds to the 2k-nearest neighbors of
xt within DSEL. The number of instances to be captured is
twice the k value passed to the algorithm because, at the end
of the function, the k instances with the highest discrimination
power will be selected.

Algorithm 1 Given xt, select instances for the region of
competence (RoCt) ranked by Discrimination index
Input: pool of classifiers: C, dynamic selection dataset:

DSEL, query instance: xt, number of neighbors: k
Output: region of competence: RoCt

1: LRt ← KNN(DSEL, xt, size=2k)
2: for each ci in pool C do
3: Acci ← get the accuracy of ci on LRt
4: end for
5: rC ← rank: C, ordered by: Acc, from: max to min
6: Hp← get the first 27% of classifiers from: rC
7: Lp← get the last 27% of classifiers from: rC
8: L← get the size of the largest group
9: for each ψj in neighbors LRt do

10: Shj ← sum hits for Hp, for instance ψj
11: Slj ← sum hits for Lp, for instance ψj
12: Ðj ← (Shj - Slj) divided by L
13: end for
14: RoCt ← get the k best instances (highest Ð)
15: return RoCt

Then, by considering the LRt, the accuracy of each clas-
sifier is calculated (Acci). The classifiers are ranked (rC) by
accuracy and the best and the worst groups of classifiers (Hp
and Lp) are chosen. The size of each group of classifiers will
be 27% (according to ITA, as shown in section III) of the total
classifiers in the pool.

Line 10 shows that the value Shj is calculated as the
number of classifiers on group Hp that hits a given instance
ψj (and the same routine is done for Slj on next line). In this
way, the Ðj will be calculated, for each ψj , as the difference
values Shj and Slj , divided by the size of the largest group
L1.

Finally, the vector Ðj has the discrimination value of each
neighbor instance j. Then, the instances are ranked by the
discrimination index, and the k neighbors that have the best
values are chosen.

B. Classifiers Competence (θ) Definition

In our method, the competence measure θi is computed indi-
vidually for each ci ∈ C. This competence is calculated based
on the concept of nearest oracles, i.e., if a classifier ci hits at
least one instance of the RoCt, then it will have competence
θi equal to the number of hits, i.e., θi = Hits(ci, RoCt). This
competence measure θ is the same used in the Knora-Union
[2].

1Actually, the two groups are equal, then only the 27% of pool size is
captured.

C. Selection Schema

In dynamic ensemble selection, only the competent classi-
fiers will be selected for each instance xt. Our method select,
to compose EoCt ⊆ C, all classifiers that have competence
measure θi different than zero. When there is no competent
classifier to hit at least one instance in the RoCt, all classifiers
will be selected EoCt = C, and all competence is set to one,
θi = 1.

D. Fusion

For this final phase, we use the majority vote algorithm to
predict the class ω, where ωl ∈ Ω, given Ω as the set of classes
in the dataset and l = {1..L} the number of classes. To label
xt we follow the steps shown in the Eq. 4, 5, 6.

ci(xt)→ ŷi, ∀ci ∈ EoCt, ŷi ∈ Ω (4)

Ψl ← Ψl + θi,where l = ŷi (5)

Eq. 5, the classifier competence θi will provide a number
of votes for the class ŷi. Thus, a vector ~Ψ of size L receive
the votes of each classifier:

Considering Eq. 4, 5, the final prediction ωt for xt will be
the most voted class:

ωt ← arg_max(~Ψ) (6)

V. EXPERIMENTS AND DISCUSSION

In this section we describe the experiments undertaken to
evaluated the proposed DES method. The proposed method
was compared against 16 different approaches, being: the
fusion of all classifiers in the pool using the majority voting [1]
rule (ALL); 8 DCS methods and 7 DES methods, respectively:
DCS-Rank (Rank) [14], Overall Local Accuracy (OLA) [5],
Local Class Accuracy (LCA) [5], APriori (API) [20], APoste-
riori (APO) [20], Multiple Classifier Behaviour (MCB) [21],
Modified Local Accuracy (MLA) [22], Dynamic Selection on
Complexity (DSOC) [9], DES-Clustering (CLU) [23], DES-
KNN (KNN) [23], KNORA-Eliminate (KNE) [8], KNORA-
Union (KNU) [8], Randomized Reference Classifier (RRC)
[7], K-Nearest Output Profiles (KNOP) [24] and META-DES
(MTD) [25]. The DesLib [26] was used as the library that
provides the implementation of major of these DS methods.

Besides the aforementioned comparisons, we have com-
puted the upper limit in terms of performance of each pool of
classifiers with respect to the corresponding test dataset, which
is known in the literature as the global oracle performance.

A. Experimental Protocol

To ensure a robust experimental protocol, 30 different
datasets were extracted from 4 different sources: UC Irvine
Machine Learning Repository (UCI) [27], Knowledge Extrac-
tion Evolutionary Learning (KEEL) dataset repository [28],
Ludmila Kuncheva Collection (LKC) of real medical data [29]
and finally a Matlab library for generation of artificial datasets
(PRTOOLS) [30]. We chose these datasets because they were



used in the last dynamic selection review [3] and because we
believe that 30 samples can generate statistically significant
results when comparing different algorithms. Table I shows
information about the selected datasets.

For each dataset, we perform 20 replications. For each
replication, the dataset was partitioned into training, valida-
tion and testing sets with the proportions: {Tr, V a, Te} =
{0.5, 0.25, 0.25}. This partition was made randomly but strat-
ified, i.e., respecting the class proportions. The classifiers were
trained by bootstrapping sample from Tr. Each bootstrapping
sample has the proportion of 0.5 of the training set, which
means 25% of the total dataset. Each bootstrapping was done
randomly with replacement and stratified.

The pool was generated homogeneously with size m = 100,
as also reported by [8], [9], [10], i.e., the pool size indicates
the number of classifiers ci that will be considered for the
entire dynamic selection system. Perceptron was used as a base
classifier (because it is a weak classifier [13]) with number-of-
epochs ne = 100. All methods were run with the same pool
for statistical comparison.

For every considered DS methods, the region of competence
was selected using the k-nearest neighbor algorithm with
the Euclidean distance and k = 7, previously defined in
the following works [8]–[10]. All datasets had their features
normalized (MinMax algorithm) with instances from train and
validation sets. After normalization, all feature values ranges
[0, 1]. Then, each query instance (xt), in the generalization
phase, is firstly normalized by the MinMax values collected
in the training phase.

Finally, for ensemble-based methods, the combination of
predictions were made by majority voting rule.

B. Results and Discussion

Table II shows the average and standard deviation of 20
replications for each dataset. This table only shows the top 10
algorithms since the Nemenyi critical difference (CD) in Fig.
2 shows they are equivalent. The last row (Tab. II) shows the
average values for each column.

Table III summarizes the results of Tab. II (considering all
algorithms):

a) Average accuracy (Acc) and standard deviation (in
parenthesis): the proposed method obtained the best average
accuracy considering 16 algorithms with Acc = 81.67, fol-
lowed by DES-KNN and META-DES.

b) Friedman rank test (F.Rank) [31]: This test was
conducted following the steps: for each dataset the algorithm
with the highest Acc value receives the rank 1, the second best
receives rank 2 and so on. If an algorithm has the same Acc
of another (tie) then an average of the rankings is made and
assigned this value for the methods in question. At the end,
each algorithm will have a ranking for each of the 30 datasets,
so the average of the rankings of each algorithm is calculated.
This F.Rank varies [1− 30] (in our case we have 30 datasets)
and the lower the F.Rank value, the better the algorithm. For
this test, DISi got the first place with average rank = 4.37
followed by DES-KNN and DES-KNOP.

Table I
SELECTED DATASETS

No. Dataset #instances #features #classes Source

01 Adult 690 14 2 UCI
02 Banana 2000 2 2 PRTools
03 Blood 748 4 2 UCI
04 CTG 2126 21 3 UCI
05 Diabetes 766 8 2 UCI
06 Ecoli 336 7 8 UCI
07 Faults 1941 27 7 UCI
08 German 1000 24 2 STATLOG
09 Glass 214 9 6 UCI
10 Haberman 306 3 2 UCI
11 Heart 270 13 2 STATLOG
12 ILPD 583 10 2 UCI
13 Ionosphere 351 34 2 UCI
14 Laryngeal1 213 16 2 UCI
15 Laryngeal3 353 16 3 LKC
16 Lithuanian 2000 2 2 LKC
17 Liver 345 6 2 PRTools
18 Magic 19020 10 2 UCI
19 Mammo 830 5 2 KEEL
20 Monk 432 6 2 KEEL
21 Phoneme 5404 5 2 KEEL
22 Segmentation 2310 19 7 KEEL
23 Sonar 208 60 2 UCI
24 Thyroid 692 16 2 LKC
25 Vehicle 846 18 4 STATLOG
26 Vertebral 300 6 2 UCI
27 WBC 569 30 2 UCI
28 WDVG 5000 21 3 UCI
29 Weaning 302 17 2 LKC
30 Wine 178 13 3 UCI

c) Sign Test [32]: pairwise count of Win, Tie and Loss
(WTL) for DISi compared to each 16 selected DS methods.
According to [32], a popular way to compare the overall
performances of classifiers is to count the number of data sets
on which an algorithm is the winner. We group the values of
wins, ties, and losses separated by ’:’, and this value is shown
in column (WTL). This column is ranked by the minimum
value of wins. Here we can observe that the last 4 methods
losses 30 times (on all datasets) compared with DISi. Figure
1 was built with WTL values. The vertical black line indicates
the critical value nc, calculated as:

nc =
nexp

2
+ Zα

√
nexp

2
(7)

where nexp = 30 is the number of experiments (datasets).
Knowing values α = {0.1, 0.05, 0.01} we have the values
of Zα = {1.28, 1.64, 2.32}. Thus we get the values: nc =
{18.5054, 19.5050, 21.3535}, respectively. Figure 1 shows that
at significance level 0.1, the DISi is better than all but DES-
KNOP and DES-KNN. At significance 0.05 the critical value
rises to 19.50 (represented by dashed line) and DISi still
maintains superior in 12 of 16 methods, i.e., on 75% of cases.
With α = 0.01 (dotted line), the proposed method is superior
in 8 from 16 methods, corresponding to 50% of cases.

d) Number of Wins (#Wins): following the same idea
of Sign Test [32], we also count the number of data sets on
wich an algorithm is the overall winner (took the first place,
boldface in Tab. II), but in this case, considering all proposed



Table II
THE AVERAGE ACCURACY AND STANDARD DEVIATION OF 20 REPLICATIONS FOR EACH DATASET.

DISi KNN KNOP MTD KNU CLU API KNE OLA MCB ORA

Adult 86.02 (2.76) 84.91 (2.25) 86.66 (2.57) 84.36 (2.29) 86.16 (2.90) 85.35 (2.31) 83.92 (1.95) 81.92 (3.21) 83.26 (3.31) 82.47 (2.66) 99.13 (0.74)
Banana 97.07 (0.73) 95.75 (1.31) 93.17 (1.53) 96.56 (0.76) 96.47 (0.64) 92.04 (1.94) 97.38 (0.60) 96.85 (0.63) 97.29 (0.53) 97.22 (0.64) 99.93 (0.12)
Blood 77.89 (1.89) 77.62 (1.51) 76.15 (3.09) 74.22 (3.24) 76.15 (2.63) 77.83 (2.21) 76.52 (2.08) 73.85 (3.63) 76.63 (2.51) 76.74 (2.54) 94.41 (3.76)
CTG 89.21 (0.76) 89.67 (0.94) 88.98 (1.02) 89.97 (1.74) 88.80 (1.07) 88.98 (0.80) 89.90 (0.78) 89.63 (1.31) 89.10 (0.97) 89.07 (1.01) 99.12 (0.44)
Diabetes 76.48 (2.34) 75.23 (2.70) 76.87 (2.76) 74.27 (2.28) 77.03 (2.47) 76.43 (2.46) 74.82 (3.19) 73.52 (3.15) 74.19 (2.50) 73.70 (2.39) 99.38 (0.52)
Ecoli 83.87 (2.95) 84.70 (3.21) 84.35 (3.26) 82.68 (2.55) 83.93 (2.83) 84.64 (2.99) 82.86 (3.33) 82.08 (3.87) 81.96 (3.71) 80.54 (4.69) 97.50 (1.09)
Faults 69.27 (1.70) 69.39 (1.86) 68.84 (2.00) 70.12 (1.56) 68.54 (2.78) 68.21 (1.98) 69.42 (1.36) 68.79 (1.96) 68.47 (2.04) 67.41 (1.69) 97.31 (1.03)
German 74.64 (2.48) 74.58 (2.51) 73.28 (3.24) 72.18 (3.52) 72.76 (3.00) 75.38 (2.63) 72.66 (2.86) 71.72 (2.99) 71.74 (3.12) 70.52 (3.12) 99.46 (0.57)
Glass 57.36 (5.59) 59.62 (5.39) 54.43 (4.63) 59.53 (5.92) 55.66 (4.95) 56.04 (3.78) 58.30 (5.19) 62.17 (4.04) 61.42 (5.25) 61.79 (5.54) 97.17 (2.63)
Haberman 61.25 (15.45) 50.39 (23.96) 53.49 (21.58) 56.45 (20.40) 52.76 (21.93) 50.39 (23.96) 55.86 (19.41) 62.76 (14.79) 63.22 (14.72) 63.88 (14.32) 73.82 (13.85)
Heart 82.91 (1.97) 82.09 (1.88) 83.13 (2.70) 80.30 (3.95) 82.91 (2.35) 83.36 (2.29) 80.37 (3.22) 77.31 (2.35) 76.27 (4.11) 76.12 (3.32) 98.88 (1.74)
ILPD 70.14 (2.17) 69.24 (2.90) 71.66 (3.02) 67.17 (3.80) 71.34 (2.66) 70.72 (1.94) 68.41 (2.67) 69.24 (3.95) 69.48 (3.02) 70.03 (2.71) 99.48 (0.63)
Ionosphere 86.25 (3.15) 87.27 (2.49) 87.10 (2.89) 87.33 (2.81) 86.31 (2.96) 86.65 (2.76) 85.45 (3.93) 87.05 (3.66) 85.45 (3.64) 85.23 (3.69) 99.72 (0.63)
Laryngeal1 83.02 (5.05) 81.89 (5.10) 83.11 (4.26) 80.38 (3.99) 82.64 (4.69) 81.98 (5.10) 80.09 (4.31) 78.68 (5.38) 79.72 (5.12) 79.06 (3.77) 100.00 (0.00)
Laryngeal3 72.67 (2.75) 72.61 (3.53) 72.33 (3.36) 70.85 (3.75) 72.73 (3.26) 72.39 (2.76) 72.90 (3.28) 69.43 (4.42) 69.49 (3.89) 68.64 (4.98) 97.61 (2.90)
Lithuanian 94.86 (1.11) 94.48 (1.04) 91.59 (1.48) 95.46 (0.95) 95.22 (1.01) 89.65 (1.69) 96.16 (0.76) 95.76 (1.05) 96.27 (0.77) 96.20 (0.77) 99.76 (0.31)
Liver 67.73 (3.99) 66.28 (3.52) 62.44 (3.50) 62.67 (5.70) 58.43 (3.29) 65.35 (4.13) 63.20 (5.11) 66.05 (5.24) 66.57 (4.46) 66.28 (3.56) 97.44 (3.45)
Magic 82.46 (0.47) 81.84 (0.74) 81.21 (0.95) 82.33 (0.57) 80.91 (0.69) 79.40 (0.72) 82.17 (0.55) 80.59 (0.78) 82.19 (0.62) 82.14 (0.64) 97.99 (1.23)
Mammo 80.63 (2.71) 80.48 (2.98) 80.48 (2.54) 77.49 (3.01) 80.24 (2.23) 80.31 (3.11) 78.84 (2.83) 76.04 (2.66) 79.06 (2.43) 78.91 (2.50) 98.86 (0.98)
Monk 84.12 (3.85) 85.23 (3.03) 84.35 (3.85) 90.74 (3.76) 82.36 (4.12) 82.31 (2.97) 84.07 (2.52) 88.06 (3.93) 84.21 (3.93) 83.66 (3.82) 99.58 (0.56)
Phoneme 81.18 (1.05) 78.98 (1.97) 77.39 (1.28) 83.43 (0.84) 77.69 (1.35) 75.24 (1.17) 83.08 (1.12) 83.25 (0.82) 82.03 (0.82) 81.99 (0.80) 97.65 (1.47)
Segmentation 92.52 (0.94) 93.47 (1.08) 93.67 (1.01) 95.03 (0.97) 92.52 (1.14) 91.69 (1.17) 93.80 (1.01) 94.97 (1.01) 93.71 (1.10) 93.93 (1.00) 99.20 (0.65)
Sonar 77.31 (5.57) 79.23 (4.78) 77.31 (5.28) 79.71 (4.85) 77.50 (5.86) 78.17 (5.59) 78.75 (6.22) 80.19 (4.63) 76.15 (6.87) 78.08 (6.22) 99.71 (0.70)
Thyroid 96.71 (1.01) 96.82 (1.18) 96.99 (0.93) 96.45 (1.07) 96.99 (0.95) 96.82 (1.25) 96.10 (1.56) 95.84 (1.40) 95.72 (1.69) 95.87 (1.52) 99.88 (0.24)
Vehicle 76.97 (2.54) 77.51 (1.95) 76.61 (2.62) 76.80 (2.11) 75.66 (2.75) 77.30 (2.23) 75.90 (1.85) 77.39 (2.58) 76.11 (2.29) 75.26 (1.74) 99.08 (0.82)
Vertebral 85.20 (4.10) 85.93 (2.95) 84.60 (3.76) 83.80 (3.60) 83.80 (4.04) 86.00 (2.72) 82.27 (5.25) 84.13 (3.79) 84.60 (3.68) 85.00 (2.87) 99.67 (0.59)
WBC 97.54 (1.34) 97.50 (1.22) 97.43 (1.41) 97.29 (1.52) 97.46 (1.30) 97.32 (1.28) 96.90 (1.32) 96.87 (1.30) 95.77 (1.53) 95.67 (1.54) 99.86 (0.37)
WDVG 85.17 (1.02) 84.95 (0.85) 84.77 (1.31) 84.33 (1.14) 83.78 (1.50) 86.04 (0.90) 83.69 (0.91) 83.48 (0.94) 83.73 (0.92) 83.05 (0.98) 99.36 (0.32)
Weaning 81.40 (4.65) 82.20 (4.04) 81.93 (4.27) 80.27 (3.34) 81.27 (4.23) 82.00 (4.16) 80.33 (4.49) 80.80 (5.00) 80.13 (4.47) 76.47 (5.09) 99.73 (0.55)
Wine 98.30 (1.93) 97.84 (1.88) 98.30 (1.93) 98.07 (2.12) 98.30 (1.93) 97.84 (2.02) 96.93 (2.25) 97.73 (2.33) 97.05 (2.46) 94.55 (3.64) 100.00 (0.00)

Mean 81.67 (10.38) 81.26 (11.18) 80.75 (11.30) 81.01 (11.32) 80.54 (11.70) 80.53 (11.08) 80.70 (11.01) 80.87 (10.47) 80.70 (10.22) 80.31 (10.16) 98.02 (4.74)

The first column shows dataset from Tab. I and other columns are the methods: DISi=Discrimation index, KNN=DES-KNN, KNOP=K-Nearest Output Profiles, MTD=META-DES, KNU=Knora-
Union, CLU=DES-Clustering, API=APriori, KNE=Knora-Eliminate, OLA=Overall Local Accuracy, MCB=Multiple Classifier Behaviour, ORA=Global Oracle as upper limit. For each dataset, the
maximum value is bold. The last row shows the average values for each column.

Table III
ACCURACY, FRIEDMAN RANK, WIN/TIE/LOSS AND NUMBER OF WINS

Alg. Acc Alg. F.Rank Alg. WTL Alg. #Wins

DISi 81.67 (10.38) DISi 4.37 (2.55) DISi – DISi 6
KNN 81.26 (11.18) KNN 5.07 (3.36) KNN 18:0:12 MTD 6
MTD 81.01 (11.32) KNOP 5.77 (3.57) KNOP 18:1:11 CLU 4
KNE 80.87 (10.47) MTD 6.43 (3.85) KNU 19:2:9 KNN 3
KNOP 80.75 (11.30) KNU 6.47 (2.99) CLU 19:0:11 KNU 3
API 80.70 (11.01) CLU 6.63 (4.37) KNE 20:0:10 API 2
OLA 80.70 (10.22) API 7.0 (3.19) API 21:0:9 KNOP 3
KNU 80.54 (11.70) KNE 7.57 (4.51) MTD 21:0:9 KNE 2
CLU 80.53 (11.08) OLA 7.87 (4.03) OLA 23:0:7 MCB 1
MCB 80.31 (10.16) MCB 8.67 (4.57) MCB 23:0:7 OLA 1
RRC 78.63 (11.54) RRC 9.6 (4.77) RRC 25:0:5 RRC 1
ALL 78.12 (12.07) ALL 10.8 (4.69) ALL 26:0:4 ALL 0
Rank 78.02 (9.66) DSOC 12.1 (3.66) Rank 27:0:3 SB 0
DSOC 77.86 (12.18) Rank 13.27 (4.23) DSOC 29:0:1 APO 0
MLA 75.78 (12.50) APO 14.9 (3.19) MLA 30:0:0 DSOC 0
LCA 75.71 (12.53) MLA 14.97 (2.3) APO 30:0:0 LCA 0
APO 75.31 (12.74) LCA 15.33 (2.01) LCA 30:0:0 MLA 0
SB 74.23 (11.56) SB 15.93 (1.91) SB 30:0:0 Rank 0

methods and not only pairwise comparison, as was done in
the above WTL item. As one can see the proposed method
got first place tied with META-DES on 6 datasets. We can
also see in this column that the last 7 methods did not score
any win for the group of selected methods.

After Friedman rank test (Tab. III), Nemenyi critical dif-
ference (CD) was calculated [32], Fig. 2. This diagram shows
that the results connected by the horizontal bar are statistically
equivalent to the average of the Friedman rankings. In this
Nemenyi diagram we see that there are 10 firstly equiva-

Figure 1. Win, Tie and Loss

lent methods: DISi, DES-KNN, KNOP, META-DES, Knora-
Union, DES-Clustering, A Priori, Knora-Eliminate, Overal
Local Accuracy and Multiple Classifier Behavior. This was
one of the reasons for showing only these methods in Table II.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a new oracle-based DES method in which
the local advisors (nearest neighbors) that composed the RoC
of a given test instance xt are evaluated using a proposed



Figure 2. Nemenyi critical difference diagram. CD = 4.8088

schema based on a discriminant index used in the Item and
Test Analysis (ITA), which is a concept originally presented
in Classical Test Theory (CTT).

A robust experimental protocol based on 30 datasets, 20
replications and comparison against other 15 DS methods have
shown that the proposed DES method is very promising. Based
on the observed results, we confirmed our hypothesis that by
selecting the local advisors with the highest discrimination
index we can better estimate the classifier competence and,
consequently, improve the DS accuracy.

As future work, we plan to better evaluate different sizes of
neighborhood, or even consider a selection of neighbors with
a variable k value. In addition, the discrimination index can
be combined with measures of complexity to better rank the
instances that form the RoC.
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