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Abstract In dynamic ensemble selection (DES) techniques,

only the most competent classifiers, for the classification of a

specific test sample, are selected to predict the sample’s

class labels. The key in DES techniques is estimating the

competence of the base classifiers for the classification of

each specific test sample. The classifiers’ competence is

usually estimated according to a given criterion, which is

computed over the neighborhood of the test sample defined

on the validation data, called the region of competence. A

problem arises when there is a high degree of noise in the

validation data, causing the samples belonging to the region

of competence to not represent the query sample. In such

cases, the dynamic selection technique might select the base

classifier that overfitted the local region rather than the one

with the best generalization performance. In this paper, we

propose two modifications in order to improve the general-

ization performance of any DES technique. First, a proto-

type selection technique is applied over the validation data

to reduce the amount of overlap between the classes, pro-

ducing smoother decision borders. During generalization, a

local adaptive K-Nearest Neighbor algorithm is used to

minimize the influence of noisy samples in the region of

competence. Thus, DES techniques can better estimate the

classifiers’ competence. Experiments are conducted using 10

state-of-the-art DES techniques over 30 classification prob-

lems. The results demonstrate that the proposed

scheme significantly improves the classification accuracy of

dynamic selection techniques.

Keywords Ensemble of classifiers � Dynamic ensemble

selection � Prototype selection

1 Introduction

In the last few years, dynamic ensemble selection (DES) [3]

has become an active research topic in multiple classifier

systems. The rationale behind such techniques resides in the

observation that not every classifier in the pool is an expert

in classifying all unknown samples. Each base classifier1 is

an expert in a different local region of the feature space [32].

Dynamic selection techniques consist, based on a pool

of classifiers C, in finding a single classifier ci, or an

ensemble of classifiers C0, that has (or have) the most

competent classifiers to predict the label for a specific test

sample, xj. The most important component of DES tech-

niques is how the competence level of the base classifier is

measured, given a specific test sample xj. Usually, the

competence of a base classifier is estimated based on

instances that are similar to the query instance, using the K-

Nearest Neighbors (KNN) technique and a set of labeled

samples, which can be either the training or validation set.

In this paper, we refer to such a set as the dynamic

selection dataset (DSEL), following the conventions of the

dynamic selection literature [3, 9]. The set with the K-
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Nearest Neighbors of a given test sample xj is called the

region of competence and is denoted by hj ¼ x1; . . .; xKf g.
The samples belonging to hj are used to estimate the

competence of the base classifiers, for the classification of

xj, based on various criteria, such as the overall accuracy of

the base classifier in this region [31], ranking [20], ambi-

guity [12], oracle [17] and probabilistic models [30].

A problem arises with dynamic selection techniques

when the samples in the local region are not representative

enough of the query sample. This may be seen in cases in

which a high degree of overlap is present between the

classes, and as a result of noise or outliers. As reported

in [7], the performance of dynamic selection techniques is

very sensitive to the distribution of DSEL.

In order to illustrate how the presence of noise in DSEL

can lead to poor classification results by using a dynamic

selection technique, we perform a case study using the

synthetic P2 problem proposed in [25]. The P2 is a bi-

dimensional two-class synthetic classification problem in

which each class is defined in multiple decision regions

delimited by polynomial and trigonometric functions.

For this example, the META-DES framework proposed

in [9] is considered since it outperformed several dynamic

selection techniques in multiple classification benchmarks.

The P2 problem was generated using the same methodology

reported in [7]: 500 samples for the training set (T ), 500

instances for the dynamic selection dataset, DSEL, and 2000

samples for the test set, G. The original distribution of DSEL
is shown in Fig. 1a. The red circle and blue cross represent

samples belonging to class 1 and class 2, respectively.

Since there is no overlap between the classes in the

original distribution, we generate noise in DSEL by

switching the labels of samples that are close to the decision

border with a 25 % probability (Fig. 1b). Samples that had

their class labels changed are highlighted in green. Fig-

ure 1c, d show the approximation of the P2 border achieved

by the META-DES framework plotted over the test distri-

bution. Figure 1c presents the decision achieved using the

original distribution of DSEL. In contrast, Fig. 1d presents

the decision obtained usingDSELwith 25 % of added noise.

We can observe that the META-DES fails to obtain a good

approximation of the decision boundary of the P2 Problem

when noise is added to DSEL. Moreover, the errors com-

mitted by the META-DES occur in regions of the feature

space where the presence of noise in DSEL is more evident.

This work therefore aims to improve the classification

accuracy of dynamic selection techniques by reducing the

presence of noise in DSEL. The proposed scheme is based

on two steps: The first modification proposed in this paper

applies a prototype selection mechanism to the dynamic

selection set, DSEL, in order to eliminate instances highly

likely to be noise, and also reduces the amount of overlap

between the classes. The Edited Nearest Neighbor

(ENN) [27] rule is used for this purpose. Secondly, the

local regions of the query sample are estimated using an

adaptive KNN rule (AKNN), which shifts the region of

competence from the class border to the class centers.

Samples that are more likely to be noise are less likely to

be selected to compose the region of competence. As such,

we expect the dynamic selection technique to be able to

better estimate the competence level of a base classifier,

leading to better generalization performance. It should be

mentioned that the proposed method can be applied to any

dynamic selection technique that uses local information in

estimating the competence of the base classifier.

The proposed approach is evaluated using 10 state-of-

the-art dynamic classifier and ensemble selection tech-

niques over 30 classification datasets. We evaluate four

scenarios: (I) The dynamic selection techniques using the

original dynamic selection dataset and the standard KNN

algorithm for computing the region of competence hj; (II)
the ENN is applied to edit DSEL and the standard KNN is

used; (III) only the AKNN technique is used, and (IV) both

the ENN and the AKNN techniques are used. The fol-

lowing research questions are analyzed: (1) Does the pro-

totype selection technique lead to an improvement in

classification accuracy? (2) Which scenario produces the

best recognition rates? (3) Which dynamic selection tech-

nique benefits the most from the proposed scheme?

This paper is organized as follows: The proposed

approach is detailed in Sect. 2. The experimental study is

conducted in Sect. 3. Finally, our conclusion and future

works are presented in the last section.

2 Proposed method

Two changes are proposed in this paper; one during the

training stage, and the other in the generalization stage. In the

training stage, we apply a prototype selection technique in the

dataset DSEL in order to remove noise and outliers. To that

end, the Edited Nearest Neighbor technique is considered

since it is able to significantly reduce the presence of noise in

the dataset, thereby improving the KNN performance [27].

During the generalization stage, given a new test sample xj;test,

the region of competence hj is computed based on the samples

in the edited dynamic selection dataset, denoted by DSEL
0
,

using a local adaptive distance rule. Both techniques are

presented in the following sections.

2.1 Edited nearest neighbor (ENN)

There are three types of prototype selection mechanisms

available [14]: condensation, edition and hybrid.
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Condensation techniques are used in order to reduce the

dataset size, without losing the generalization performance

of the system. Edition techniques aim to improve the per-

formance of the KNN algorithm by removing instances

with a high risk of being noise. The editing process occurs

in regions of the feature space with a high degree of

overlap between classes, producing smoother class

boundaries. Hybrid techniques perform both a condensa-

tion of the data and edition of the class borders. Since our

goal is to improve the classification accuracies, an edition

technique is performed. The Edited Nearest Neighbor

(ENN) [27] is used since it is a very well-known technique

for removing noise and decreasing the amount of overlap in

the class borders, producing smoother decision borders.

Moreover, the ENN technique is known to significantly

improve the performance of the KNN [14].

Given the dynamic selection dataset DSEL, the ENN

algorithm works as follows (Algorithm 1): For each

instance xj;DSEL 2 DSEL, the class label of xj;DSEL is pre-

dicted using the KNN algorithm using a leave-one-out

procedure. A K ¼ 3 was used, as suggested by Wil-

son [27], in order to satisfy the asymptotic properties of the

NN technique. If xj;DSEL is misclassified by the KNN

technique, it is removed from the set, since xj;DSEL is in a

region of the feature space where the majority of samples

belongs to a different class. The edited dynamic selection

dataset, denoted by DSEL
0
, is obtained at the end of the

process.

It should be mentioned that the ENN does not remove

all samples in the class borders and that the intrinsic

geometry of the class borders and the distribution of the

classes are preserved. Only instances that are associated

with a high degree of instance hardness, i.e., those for

which the majority of neighbors belong to a different class,

are removed. As reported in [21], these samples have a

reputation for being hard to be correctly classified by the

majority of learning algorithms. Only the classifiers that

overfitted the training data are able to predict its correct

class label. In such cases, the dynamic selection technique

might select the base classifier that overfitted the local

region rather than the one that has the best generalization

performance in the region. By removing these instances,
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Fig. 1 Case study using the

synthetic P2 problem. The red

circle represents the class 1 and

the blue cross the class 2. The

axes represent the values of the

two features of the P2 problem.

a The original distribution of

DSEL. b The distribution of

DSEL with 25 % of added noise

by switching labels of samples

close to the class borders. The

noisy samples are highlighted in

green. c Result of the META-

DES framework using the

Original DSEL. d Results of the

META-DES framework using

the noisy DSEL (color

figure online)

Algorithm 1 The Edited Nearest Neighbor rule
Input: Dynamic Selection Dataset DSEL
1: DSEL

′
= DSEL

2: for each xj,DSEL ∈ DSEL do
3: if label (xj,DSEL) �= label (KNN (xj,DSEL))

then
4: DSEL

′
= DSEL

′ \ {xj,DSEL}
5: end if
6: end for
7: return DSEL

′
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we expect the dynamic selection techniques to be able to

better estimate the base classifier’s competences.

2.2 K-nearest neighbor with local adaptive distance

The locally adaptive distance for KNN was proposed

in [26]. For each sample x
j;DSEL

0 in the edited dynamic

selection dataset DSEL
0
, the largest hypersphere centered

on x
j;DSEL

0 , which excludes all samples in DSEL
0
with a

different class label, is constructed (Fig. 2). Such a

hypersphere is built by computing its radius R
j;DSEL

0 , which

is measured as the minimum distance between the sample

R
j;DSEL

0 and a sample from a different class x
jk;DSEL

0

(Eq. 1):

R
j;DSEL

0 ¼ d x
j;DSEL

0 ; x
jk;DSEL

0

� �
� � ð1Þ

where d x
j;DSEL

0 ; x
jk;DSEL

0

� �
is the Euclidean distance

between the instances xj;DSEL0 and x
jk;DSEL

0 , � is a small

number (in this work � ¼ 0:01). w
j;DSEL

0 and w
jk;DSEL

0 are

the labels of x
j;DSEL

0 and x
jk;DSEL

0 , respectively.

Each instance belonging to DSEL
0
is associated with a

hypersphere of radius R
j;DSEL

0 . The hypersphere associated

with each sample delimits the region within which its

class label can be generalized to other samples without

making an error [26]. The hypersphere associated with

samples that are closer to the class center have a larger

radius since they are more distant from samples from

different classes, when compared to those hyperspheres

that are associated with samples that are closer to the

class boundaries. Figure 2 illustrates an example of the

hypersphere associated with different samples from the P2

problem.

The adaptive distance between a given test sample xj;test

and a sample belonging to DSEL
0
, x

j;DSEL
0 , is obtained

using Eq. 2.

dadaptiveðxj;test; xj;DSEL0 Þ ¼
dðxj;test; xj;DSEL0 Þ

R
j;DSEL

0
ð2Þ

The distance is said to be adaptive since the influence of

each sample is normalized by a factor R
j;DSEL

0 , which

changes according to the spatial location of each instance

in DSEL
0
. The larger the value of R

j;DSEL
0 (i.e., larger

hypersphere), the lower the value of dadaptive. The A-KNN

technique is beneficial in regions where there is a high

degree of overlap between the two classes, since it tends to

identify samples that have larger hyperspheres as the

nearest neighbors to the query sample. As reported in [26],

the majority of K-Nearest Neighbors selected are more

likely to have the same class label as the query sample.

Thus, the dynamic selection algorithm can better estimate

the competence of the base classifiers for the classification

of xj;test.

2.3 Case study

Using the same distributions of the P2 problem discussed

in Sect. 1, if we apply the ENN technique in editing the

dynamic selection dataset, the overlap in the decision

boundary is significantly removed. Figure 3a shows the

distribution of the edited dynamic selection dataset DSEL
0

using the ENN prototype selection technique. Noisy sam-

ples are highlighted in green. We can see that the majority

of noisy samples were removed from DSEL. In addition,

we can see that the geometry of the decision border is still

preserved. Figure 3b shows the result of the META-DES

technique using the DSEL
0
in computing the local regions.

The META-DES can have a closer approximation of the

real decision boundary of the P2 problem. However, it can

be seen that there are still some outliers in the edited

DSEL, and their presence still negatively affects the per-

formance of the system.

The adaptive distance comes in handy in those cases

since there is no guarantee that the ENN will completely

remove all noisy samples from DSEL. If we also use the

adaptive distance (Fig. 3c) in computing the region of

competence hj, the META-DES can obtain a decision

boundary that is close to those obtained using a noise-free

DSEL. Thus, by editing the dynamic selection dataset and

the adaptive KNN distance, we can obtain a good

approximation of the decision boundary of the P2 problem,

even with a high noise presence.
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Fig. 2 Example of the hypersphere associated with the samples in

DSEL
0
, considering the P2 problem. The red circle and the blue cross

represent samples belonging to class 1 and class 2, respectively. The

X- and Y-axes indicate the values of the two features of the P2

problem (color figure online)
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3 Experiments

In this section, we compare the impact of the adaptive

distance and the editing of the class boundaries using

several state-of-the-art dynamic classifier selection and

dynamic ensemble selection techniques found in the

literature.

3.1 Dynamic selection methods

A total of 10 dynamic selection techniques were considered

in the experiments. In order to have a balance between

dynamic classifier selection (DCS) and dynamic ensemble

selection (DES), we considered five techniques from each

paradigm. In addition, based on the dynamic selection

taxonomy proposed in [3], there were five categories:

Ranking, Accuracy, Oracle, Probabilistic and Behavior. To

ensure the availability of a diverse set of techniques, we

considered at least one technique taken from each category.

We also included the META-DES in the experimental

study which was published after the survey, and could be

considered as belonging to a different category (meta-

learning). Thus, methods that use different sources of

information for estimating the competence level of the base

classifiers were considered in the experimental study.

Table 1 illustrates the 10 dynamic selection techniques

considered in this work.

For dynamic classifier selection, the following tech-

niques were considered: Local classifier Accuracy (LCA)

[31], Overall Local Accuracy (OLA) [31], Modified Local

Accuracy (MLA) [22], Classifier ranking (RANK) [20] and

the Multiple Classifier Behavior (MCB) [15]. The follow-

ing techniques for dynamic ensemble selection were con-

sidered: K-Nearest Oracles Eliminate (KNORA-E) [17], K-

Nearest Oracles Union (KNORA-U) [6], Randomized

Reference Classifier (DES-PRC) [28], K-Nearest Output

Profiles (KNOP) [5, 6], and the META-DES frame-

work [9]. The pseudo-code for each technique can be

found in the following survey [3], and in [9], for the

META-DES framework.

3.2 Datasets

The experiments were conducted on 30 datasets taken from

five different data repositories. Sixteen datasets were taken

from the UCI machine learning repository [2], four from

the STATLOG project [16], four from the Knowledge

Extraction based on Evolutionary Learning (KEEL)

repository [1], four from the Ludmila Kuncheva Collection

of real medical data [18], and two artificial datasets gen-

erated with the Matlab PRTOOLS toolbox [13]. The

experimental study is focused on small size datasets, since,

as reported by Cavalin et al. [6], dynamic selection tech-

niques have been shown to be an effective tool for
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Fig. 3 Case study using the

two-dimensional P2 problem.

The axes represent the values of

the two features of the P2

problem: a Distribution of

DSEL after applying the ENN

technique to clean the border.

Noisy samples are highlighted

in green; b Result of the

META-DES framework using

DSEL
0
for computing the local

regions; c Result of the META-

DES using the adaptive distance

(AKNN); d Result of the

META-DES framework using

both the ENN and the AKNN

techniques (color figure online)
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problems where the level of uncertainty for recognition is

high due to few training samples being available. However,

a few larger datasets, such as the Magic gamma telescope,

phoneme and Adult, were also considered in order to

evaluate the performance of the proposed scheme for dif-

ferent types of classification problems.

Since ensemble methods have recently become popular

in dealing with the class imbalance problem [23, 11, 19],

several imbalanced datasets, such as Ecoli, Glass, Satimage

and Phoneme, were also considered. Table 2 presents the

main characteristics of the 30 classification datasets. The

imbalanced ratio (IR) is measured by the number of

instances of the majority class per instance of the minority

class. Thus, a higher IR value indicates a higher degree of

imbalance.

In order to ensure a fair comparison between the

results obtained by the proposed technique and those

from the DES literature, the same experimental setup as

in previous works [9] is considered. For each dataset,

the experiments were carried out using 20 replications.

For each replication, the datasets were randomly divi-

ded on the basis of 50 % for training, T , 25 % for the

dynamic selection dataset, DSEL, and 25 % for the

generalization set, G. The divisions were performed

while maintaining the prior probabilities of each class.

Since the META-DES framework requires an additional

training step for the training of the meta-classifiers

(meta-training), 25 % of the training set was used in the

meta-training phase. The pool of classifiers C was

composed of 100 Perceptrons generated using the

Bagging technique. The size of the region of compe-

tence (neighborhood size) K was equally set at 7 for all

techniques. The hyper-parameters for the META-DES

framework were set according to guidelines proposed

by the authors [7, 8].

3.3 Comparison between different scenarios

We evaluated four different scenarios for the dynamic

selection techniques (Table 3).

For each scenario, we evaluated each dynamic selection

technique over the 30 datasets, for a total of 300 experi-

ments (30 datasets � 10 techniques) per scenario. To

compare the four approaches, the Friedman rank analysis

was conducted since it is a robust statistical method for

comparing multiple techniques over several datasets [10].

For each dataset and dynamic selection method, the

Friedman test ranks each scenario, with the best performing

one getting rank 1, the second best rank 2, and so forth.

Then, the average rank of each scenario is calculated. The

best scenario is the one that obtained the lowest average

rank. After the average ranks were computed, the post hoc

Bonferroni–Dunn test was conducted for a pairwise com-

parison between the ranks achieved by each scenario. The

performance of two techniques is significantly different if

their difference in average rank is higher than the critical

difference (CD) calculated by the Bonferroni–Dunn post

hoc test. The average ranks of the four scenarios, as well as

the results of the post hoc test, are presented using the CD

diagram [10] (Fig. 4). We can see, based on the CD dia-

gram, that the performance of Scenario IV is statistically

better when compared to the other scenarios.

In addition to the Friedman analysis, we also conducted

a pairwise comparison between Scenario I (without using

the ENN and A-KNN) and the other test scenarios, using

the sign test [10] calculated on the computed wins, ties and

losses. The null hypothesis H0 meant that both approaches

yielded equivalent results, and a rejection in H0 meant that

the proposed approach was significantly better at a prede-

fined significance level. In this work, we use the signifi-

cance level a ¼ 0:05. To reject H0, the number of wins

Table 1 Dynamic selection

techniques considered in the

experiments

Technique Category Reference

DCS

Classifier rank (RANK) Ranking Sabourin et al. [20]

Local Classifier Accuracy (LCA) Accuracy Woods et al. [31]

Overall Local Accuracy (OLA) Accuracy Woods et al. [31]

Modified Local Accuracy (MLA) Accuracy Smits [22]

Multiple Classifier Behavior (MCB) Behavior Giacinto et al. [15]

DES

K-Nearests Oracles Eliminate (KNORA-E) Oracle Ko et al. [17]

K-Nearests Oracles Union (KNORA-U) Oracle Ko et al. [17]

Randomized Reference Classifier (RRC) Probabilistic Woloszynski et al. [29]

K-Nearests Output Profiles (KNOP) Behavior Cavalin et al. [6]

META-DES Meta-Learning Cruz et al. [9]

Pseudo-code for each technique can be found in the following survey [3], and in [9], for the META-DES

framework
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needs to be greater than or equal to the critical value nc
calculated using Eq. 3:

nc ¼
nexp

2
þ za

ffiffiffiffiffiffiffiffi
nexp

p

2
ð3Þ

where nexp is the total number of experiments (10 tech-

niques � 30 datasets = 300), and za ¼ 1:645, for a sig-

nificance level of a ¼ 0:05. Hence, nc ¼ 170:14.

Considering Scenario IV, the number of wins, ties and

losses are 195, 23 and 82, respectively. However, for

computing the test, half the ties are added to the wins and

the other half to the losses, which gives us 206.5 wins and

93.5 losses. H0 is rejected since 206:5[ 170:14. Scenario

II also presented a significant gain in performance, with

186 wins and 114 losses, while the performance of Sce-

nario III was statistically equivalent (152 wins and 148

losses).

Based on the statistical analysis, we can conclude that

Scenarios II and IV achieve results that are statistically

better when compared to Scenario I. Thus, the proposed

scheme does indeed lead to significant gains in perfor-

mance for dynamic selection techniques. We can also

observe that the editing of DSEL using the ENN technique

is the main factor in improving the classification perfor-

mance, since Scenario II also presented a significant gain in

Table 2 Summary of the 30

datasets used in the experiments

(Adapted from [9])

Database No. of instances Dimensionality No. of classes IR Source

Pima 768 8 2 1.87 UCI

Liver disorders 345 6 2 1.37 UCI

Breast (WDBC) 568 30 2 1.86 UCI

Blood transfusion 748 4 2 3.20 UCI

Banana 1000 2 2 1.00 PRTOOLS

Vehicle 846 18 4 1.09 STATLOG

Lithuanian 1000 2 2 1.00 PRTOOLS

Sonar 208 60 2 1.14 UCI

Ionosphere 315 34 2 1.78 UCI

Wine 178 13 3 1.47 UCI

Haberman’s survival 306 3 2 2.78 UCI

Cardiotocography (CTG) 2126 21 3 9.40 UCI

Vertebral column 310 6 2 2.1 UCI

Steel plate faults 1941 27 7 14.05 UCI

WDG V1 5000 21 3 1.02 UCI

Ecoli 336 7 8 71.50 UCI

Glass 214 9 6 8.44 UCI

ILPD 583 10 2 2.49 UCI

Adult 48,842 14 2 3.17 UCI

Weaning 302 17 2 1.00 LKC

Laryngeal1 213 16 2 1.62 LKC

Laryngeal3 353 16 3 4.19 LKC

Thyroid 215 5 3 12.05 LKC

German credit 1000 20 2 2.33 STATLOG

Heart 270 13 2 1.25 STATLOG

Satimage 6435 19 7 9.29 STATLOG

Phoneme 5404 6 2 2.41 ELENA

Monk2 4322 6 2 1.11 KEEL

Mammographic 961 5 2 1.05 KEEL

MAGIC gamma telescope 19,020 10 2 1.84 KEEL

The imbalanced ratio (IR) is measured by the number of instances of the majority class per instance of the

minority class

Table 3 Four test scenarios

Scenario ENN Adaptive KNN

I No No

II Yes No

III No Yes

IV Yes Yes

Neural Comput & Applic (2018) 29:447–457 453
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performance when compared to Scenario I, while the per-

formance of Scenario I and III was statistically equivalent.

3.4 Comparison between DES techniques

In order to identify which dynamic selection technique

benefited the most from the proposed scheme, we con-

ducted an analysis considering each technique separately.

We performed a pairwise comparison between each DES

technique using Scenarios I and IV. Only Scenario IV is

considered in this analysis since it outperformed Scenarios

II and III in the previous experiment. The comparison was

conducted using the sign test calculated on the computed

wins, ties and losses. The null hypothesis H0 meant that the

corresponding DES technique achieved equivalent results

using Scenarios I and IV. In this case, the total number of

experiments for each DES technique is equal to the number

of datasets nexp ¼ 30.

In order to reject H0 at a ¼ 0:05, the number of wins

plus half the number of ties achieved by a dynamic

selection technique must be greater than or equal to the

critical value, nc ¼ 19:5. As shown in Fig. 5, the META-

DES, OLA, LCA, KNORA-E, DCS-RANK and DES-PRC

achieved significant performance gains using the proposed

approach.

Furthermore, the Friedman test was used in order to

compare the results of all the DES techniques over the 30

classification datasets (Fig. 6), using Scenarios I and IV.

Techniques marked with an * are the ones using the ENN

and A-KNN (Scenario IV). It can be seen that all DES

techniques presented a lower average rank when using the

proposed scheme (Scenario IV). Moreover, the techniques

that are based purely on local accuracy information, such

as LCA and OLA and DCS-RANK, presented a greater

benefit, i.e., difference between the average ranks. For

instance, the LCA* achieved an average rank of 9.96,

while the average rank for the original LCA technique was

12.96. Techniques that are not based on the information

extracted from the feature space, such as the MCB, which

estimates the competence of the base classifier using the

decision space, are the ones with smaller differences in

average ranks (12.0 obtained by MCB against 11.4

achieved by the MCB*), which may simply be explained

by the fact the ENN technique reduces the amount of

overlap in the feature space rather than the decision space.

Since the META-DES technique obtained the lowest

average rank, we also present the classification accuracies

obtained by the META-DES and META-DES* for the 30

classification datasets (Table 4). The best results are

highlighted in bold.

3.5 Discussion

Looking at the classification results in Table 4, we can see

that the proposed scheme works well when dealing with

problems with few classes, even when considering datasets

with a high degree of overlap between them, such as the

Liver, Blood and Monk2, datasets. The proposed

scheme failed to improve the classification accuracy only

in a few datasets. These datasets generally have the same

characteristics: They are both heavily imbalanced and

small-sized. In such cases, there may not be enough sam-

ples in the dynamic selection dataset for the ENN filter and

the AKNN to work properly. In fact, the ENN technique

tends to remove instances from the minority class since

they are under-represented, and some isolated instances

may be considered as noise by the algorithm. Hence, we

believe that the best strategy to deal with problems that are

heavily imbalanced involves using a prototype generation

technique, such as in [4, 24], to generate samples for the

CD = 0.30706

4 3 2 1

1.9333
Scenario IV

2.4233
Scenario II2.7033Scenario III

2.94Scenario I

Fig. 4 Critical difference diagram considering the four test scenarios. The best algorithm is the one presenting the lowest average rank.

Techniques that are statistically equivalent are connected by a black bar
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minority class, and apply the prototype selection only for

the majority class.

Another important aspect of the proposed scheme is

that, by removing samples in DSEL, the running time of

the dynamic selection techniques decreases. For every

technique, the running time to classify a given test instance

xj of each method is a combination of the definition of the

region of competence and evaluating the competence level

of each classifier in the pool. The definition of the region of

competence is performed only once as it depends only on

the input sample xj, and not on the base classifier. Since it

is performed based on the AKNN technique, the cost is of

order Oðd � NÞ, given that d and N are the number of

dimensions and samples in the dynamic selection dataset

(DSEL
0
), respectively.

For each dynamic selection technique, the outputs of the

base classifiers for the samples in DSEL must first be pre-

calculated during the training stage of the system and

stored in a matrix. The storage requirement for the pre-

calculated information is OðM � N � XÞ, with M and X
being the number of classifiers in the pool and the number

of classes in the dataset. The computational cost involved

0 5 10 15 20 25 30

META−DES.H

KNORA−E

KNORA−U

LCA

OLA

MLA

MCB

KNOP

DESPRC

DCSRANK

Te
ch

ni
qu

es

# Datasets

Win
Tie
Loss

Fig. 5 Performance of the each dynamic selection technique using the ENN and A-KNN in terms of wins, ties and losses. The dashed line

illustrates the critical value nc ¼ 19:5

CD = 5.0271

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

3 META−DES.H*
4.1667 META−DES.H

6.2 DESPRC*
8.1667 KNORA−E*

8.5 DESPRC
8.7333 KNORA−U*
9.8667 KNOP*
9.9667 LCA*

10.2333 KNORA−U
10.6667 DCSRANK*10.7KNOP

10.8KNORA−E
11.4MCB*
12MCB
12.4667OLA*
12.9667LCA
13.6667DCSRANK

13.9667OLA
15.8MLA*
16.7333MLA

Fig. 6 CD diagram considering all techniques. Techniques marked with a asterisk symbol are the ones using Scenario IV
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during generalization consists in accessing the outputs of

the base classifier stored in the matrix and applying the

selection criteria for each base classifier in the pool. Thus,

the cost of evaluating the competence of each classifier in

the pool of classifiers is O(M).

Therefore, besides improving the classification accu-

racy, the proposed scheme can also reduce the memory

requirement and the running time of dynamic selection

techniques during the generalization phase.

4 Conclusion

In this paper, we demonstrate that the performance of DES

techniques is sensitive to the dynamic selection dataset

distribution. A high degree of overlap in the dynamic

selection dataset may lead to poor estimations of the local

competence of the base classifiers; thus, the dynamic

selection technique fails to select the most appropriate

classifier for the classification of a new query sample. We

show that with two simple modifications, we can signifi-

cantly improve the generalization performance of any

dynamic selection technique.

In order to evaluate the impact of the proposed scheme,

we compared the results of ten dynamic classifier selection

and dynamic ensemble selection techniques over 30 classi-

fication datasets. The experimental results demonstrate that

the proposed scheme significantly improves the classifica-

tion accuracy of the dynamic selection techniques. The

scenario using both the ENN and A-KNN techniques pre-

sented the overall best result. In addition, using only the

ENN for editing the dynamic selection dataset brings about a

significant gain in classification accuracy.

Future work will include the evaluation of different

prototype selection techniques, as well as prototype gen-

eration for dealing with problems that are both small sized

and heavily imbalanced.
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