
14 SQP VOL. 14, NO. 3/© 2012, ASQ

In a competitive world, it is important
to measure and improve the performance
of software engineering processes and
imperative to identify and eliminate rework
that could have been avoided. The cost
of software quality is one measure of the
performance of software processes. It com-
prises the total cost associated with the
prevention, appraisal, and correction of
the anomalies in a product. A measure of
the cost of software quality was performed
by the software development group at
Bombardier Transportation, a division of
Bombardier Inc., located in Québec, Canada.
A team of 15 software engineers developed
the software to control the subway of a
large American city. A project to measure
the cost of software quality was carried
out in four stages. A set of 27 classifica-
tion rules was developed, and weights were
assigned to each project task. More than
1100 software tasks were analyzed on a
project totaling 88,000 hours. The mea-
surements show that the cost of software
quality represents 33 percent of the overall
project cost. The cost of rework, or the cost
of correcting anomalies, is 10 percent, the
cost of prevention is 2 percent, and the
cost of evaluation is 21 percent of the total
development cost.

Key words

cost of anomalies, cost of evaluation, cost of
prevention, cost of rework, cost of software
quality, measurement, process improvement,
very small entities

S O F T W A R E Q U A L I T Y M A N A G E M E N T

Measuring
the Cost of
Software

Quality of a
Large Software

Project at
Bombardier

Transportation:
A Case Study

Claude Y. Laporte
École de technologies supérieure

Nabil Berrhouma

Mikel Doucet
Bombardier Transportation

Edgardo Palza-Vargas

INTRODUCTION
According to Charette, “Studies have shown that software
specialists spend about 40 to 50 percent of their time on avoid-
able rework rather than on what they call value-added work,
which is basically work that’s done right the first time. Once

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

www.asq.org 15

a piece of software makes it into the field, the cost of
fixing an error can be 100 times as high as it would
have been during the development stage” (Charette
2005). Measuring and reducing the percentage of
avoidable rework should be one objective of most
process improvement initiatives.

A recent paper presented the results of a literature
review about software quality cost research of 87
articles published between 1980 and 2009. One of the
conclusions and recommendations was the following
(Karg, Grottke, and Beckhaus 2011): Only about a
third of the analyzed articles present a case study or
more extensive empirical results. This appears to be
insufficient for software quality cost research, which
strongly relies on quantitative data to generate new
findings. There is thus a need for novel approaches
to gather quality cost data, as well as stronger coop-
eration between industry and research to make such
data available. This article presents such a case study
performed in the railway industry.

Many enterprises measure the costs required to
perform various functions, such as the cost of develop-
ing a product, the cost of maintaining it, the cost of
support, and so on. The measure of the cost of quality
(CoQ) is very useful for improving the performance of
processes, as one’s objective must be to seek expensive
activities and, above all, identify and eliminate waste.
Importantly, software development activities should
not be excluded from this measure. One important
challenge is the measurement of the cost of software
quality (CoSQ). It is clear that preventing defects
reduces costs, and the CoQ is the sum of the costs
associated with the prevention, assessment, and cor-
rection of anomalies. A framework for the classification
of quality-related costs was introduced by Feigenbaum
in the 1950s (Feigenbaum 1956) to provide justification
for managers wishing to make investments in process
improvement. The framework has since been adapted
to the software engineering domain. In this article,
the authors present the results of the measurement
of the CoSQ of a large completed project.

OVERVIEW OF BOMBARDIER
TRANSPORTATION
Bombardier Inc. has a workforce of some 80,000 people
in 24 countries. Bombardier Aerospace is a world
leader in the manufacture of business jets and regional

transport, and Bombardier Transportation is a leader
in the manufacture of rail transport equipment. The
division manufactures locomotives, freight cars, and
propulsion and control systems, and also provides
systems and signaling equipment. Its product range
includes passenger vehicles and transport systems.

Modern trains and subways are increasingly com-
plex, and more and more subsystems are computer
controlled, such as propulsion and braking systems.
At the time of this case study, there were more than
30 software development centers within Bombardier
Transportation, for a total of about 950 software
engineers. One of these development centers is located
in Québec, Canada.

The Software Development
Group in Québec
The Software Development Group (SDG), located in
St-Bruno near Montreal, is made up of 30 software
engineers whose role is to design, develop, and main-
tain embedded software for trains and subways, mainly
the software monitoring system used for collecting
software maintenance information and software for
controlling car inclination.

Bombardier Transportation has defined, in their
procedure, two types of objectives for the measurement
of the CoQ: those directed at senior management and
those targeting the SDG. These objectives are aligned
with the main process of the ISO/IEC15939 standard
(ISO 2007): commitment, planning, performing, and
evaluating measurement activities for projects.

The objectives of a directive, directed at senior
management, were the following:

•	 Quantify the CoQ components for high-level
management

•	 Identify major opportunities to reduce costs

•	 Identify the main contributors to the cost of
poor quality

•	 Provide a baseline to budget quality activities

•	 Stimulate improvement efforts through the
publication of the CoQs within the company

•	 Develop a CoQ dashboard

•	 Use the measurements to compare process
improvement activities, in order to identify
those that are the most effective

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

16 SQP VOL. 14, NO. 3/© 2012, ASQ

The Bombardier Software
Development Process
The Bombardier Software Development Process
(BSEP) was inspired by and derived mainly from the
Rational Unified Process (RUP). Illustrated in Figure
1, it provides a disciplined approach to assigning tasks
and responsibilities within a software development
organization. Its goal is to ensure the production of
high-quality software that meets the needs of end users
within a predictable timeframe and budget.

The BSEP has two dimensions:

The objectives targeting the SDG were:

•	 Identify a project to measure the CoSQ

•	 Collect data on costs

•	 Categorize costs related to software quality

•	 Develop a data model for the measurement
of CoSQ

•	 Analyze data collected on the selected project
using the data model

•	 Present the CoSQ report to senior management

•	 Expand the measurement of the CoSQ to all
software projects in SDG

©2
01

2,
 A

SQ

Phases

MaintenanceConstructionElaborationPlanningProposalProcesses

Commissioning
FAI

QualifCDRPDRNTPProject Milestones

Bid
ReleaseBid

Decision

Customer
Final

Acceptance

System Requirements Analysis

Iterations

Process Utilization
Tailoring Process

1
Pr

im
ar

y
Li

fe
 C

yc
le

1.
2

De
ve

lo
pm

en
t

2
Su

pp
or

tin
g

3
Or

ga
ni

za
tio

na
l

1.1 Supply

Bid
Package

Req Dev Dev Dev Product
Formal Baselines

Maint
Rel #2

Maint
Rel #1

Rel
#4

Rel
#3

Rel
#2

Rel
#1

Bid
#2

Required
As-needed

* Under QA Responsibilities (AQ-203)

Bid
#1

Planning CDRPDR

2.1 Con�guration Management
2.2 Quality Assurance*

2.3 Veri�cation and Validation

3.3 Improvement

2.4 Joint Review
2.5 Problem Resolution

System Architectural Design
Software Requirements Analysis

Software Architectural Design
Software Detailed Design

Software Coding and Testing
Software Integration

Software Validation Testing
System Integration

System Quali�cation Testing
Software Installation

3.1 Management

3.2 Infrastructure

3.4 Training

Legend
NTP: Notice to proceed PDR: Preliminary design review CDR: Critical design review
Qualif: System quali�cation FAI: First article inspection Req: Requirement
Dev: Development Rel: Release Maint: Maintenance

FIGURE 1	 The Bombardier software development process

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

www.asq.org 17

A document, like the project plan, the
requirements document, or software
requirements specifications (SRS)

Code

Process Types
Process types constitute the foundation of the BSEP.
Each process item that composes the BSEP has an
associated type, and there are three of them (see
Figure 2): a primary type, such as a role, activity, or
artifact; a supporting type, such as a tool, training,
or a metric; and a life-cycle type, such as a phase or
a milestone. For example, a milestone is defined as a
major event at a specific point in the project that has
a significant bearing on the status of the work. It is
an opportunity to check progress and reassess plans
when management “Go” and “No Go” decisions are
made. Milestones are located at the ends of phases
or iterations.

BSEP Configuration Identification
The BSEP configuration identification (CI), also called
the process bill of materials (BOM), is the cornerstone
of the BSEP process. This document lists all of the
process items that will form the final BSEP process.
This approach is similar to the initial creation of a
plan before the detail-writing effort for a new docu-
ment is begun: identify the document structure and
its elements, and provide high-level information for

•	 The vertical axis represents
processes that are groups of
activities based on the ISO
12207 standard (ISO 2008).
This dimension corresponds
to the static aspect of the
process, that is, how it is
described in terms of process
items: processes/subprocesses,
activities, and artifacts.

•	 The horizontal axis represents
time and shows the life-cycle
aspects of the process as it
unfolds. This dimension corre-
sponds to the dynamic aspect
of the process as it unfolds,
and is expressed in terms of
phases, iterations, milestones,
and formal baselines.

The BSEP processes are expressed through a set
of roles, activities, and artifacts:

•	 Roles: A role defines the behavior and respon-
sibilities of an individual or groups of people
working in teams, in the context of a soft-
ware engineering organization. The roles
and responsibilities define both the “who and
how” the work will be executed. Individual
members of project teams can play different
roles during the project, wearing different hats,
metaphorically speaking.

•	 Activities: Roles have activities assigned to
them that define their work and that must
be completed to achieve a given objective.
An activity is a unit of work performed by
an individual responsible for the activity
described by the role. An activity is also any
work performed by managers and technical
staff to carry out project tasks. An activity is
used to plan and monitor a project.

•	 Artifacts: An artifact is a product of the pro-
cess and is the input or output of activities.
Artifacts are used to perform activities and
are produced during project execution. They
may be internal or external to the project and
take various forms:

A model, such as use-case model

©2
01

2,
 A

SQ

Input Output

Process/
subprocess

Milestone

Phase

Baseline

Role Iteration
detail

Guideline

Training
material

Technique Concept

ToolExampleTemplate

Metric

Activity

Artifact

Responsibility

Responsibility
Checklist

Primary Types Supporting Type Life Cycle Related Types

FIGURE 2	 Life-cycle-related types of the BSEP

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

18 SQP VOL. 14, NO. 3/© 2012, ASQ

those elements. The CI of BSEP provides similar
information for the BSEP process:

•	 Process structure (based on the ISO 12207
software life-cycle processes standard)

•	 Process items or a list of process elements
that will form the final BSEP process

•	 Associated types (for example, role, activity,
artifact) for each process item

•	 Planning and monitoring information

Table 1 presents the configuration identification
of the BSEP process.

COST OF SOFTWARE QUALITY
The Project Management Body of Knowledge (PMBOK®)
from the Project Management Institute (PMI) defines
CoQ as follows (PMI 2008): [Technique] a method
of determining the costs incurred to ensure quality.
Prevention and appraisal costs (cost of conformance)
include costs for quality planning, quality control
(QC), and quality assurance to ensure compliance to
requirements (that is, training, QC systems, and so
on). Failure costs (cost of nonconformance) include
costs to rework products, components, or processes
that are noncompliant, costs of warranty work and
waste, and loss of reputation.

The concept of CoQ has been adapted for the
software industry and is sometimes called the cost of
software quality (CoSQ) (Campanella 1990; Mandeville
1990; Slaughter, Hanter, and Krishnan 1998; Krasner
1998; Houston 1999). CoSQ can be broken down into
three categories: appraisal or evaluation costs, cost
of prevention, and cost of anomalies (adapted from
Galin 2004a and PMI 2008):

•	 Appraisal or evaluation costs: the costs of
verification or evaluation of a product or
service during the various stages of delivery
(for example, reviews and tests).

•	 Cost of prevention: the costs incurred by an
organization to prevent the occurrence of
errors in various stages during the delivery
process (for example, design, development,
production, and shipment) of a product or a
service to the customer.

•	 Cost of anomalies, also known as the costs of
noncompliance, can be divided into two types:

TABLE 1	 Configuration identification of
the BSEP process

©2
01

2,
 A

SQ

Primary life-cycle processes

Supply

Development

System requirements analysis

System architectural design

Software requirements analysis

Software architectural design

Software detailed design

Software coding and testing

Software integration

Software validation testing

System integration

System qualification testing

Software deployment

Supporting life-cycle processes

Configuration management

Quality assurance

Verification and validation

Peer reviews

Verification evaluation

Verification and validation reporting

Joint review

Project management reviews

Technical reviews

Problem resolution

Problem report

Organizational life-cycle processes

Management

Estimate the project

Plan the project

Manage risks

Track the project

Infrastructure

Plan infrastructure activities

Establishment of the project infrastructure

Establishment of the global infrastructure

Maintenance of the infrastructure

Training

Plan training activities

Implement training plan

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

www.asq.org 19

•	 Domino effect: damages to other projects
planned to be performed by team mem-
bers involved in delayed projects due to
extra costs for recruitment of replacement
team members

External managerial failure costs:

•	 Damages paid to customers as compensa-
tion for late project completion resulting
from an unrealistic schedule presented
in proposal

•	 Damages paid to customers as compensa-
tion for late project completion resulting
from failure to recruit sufficient and
appropriate team members

•	 Domino effect: damages for delayed com-
pletion paid to clients of other projects
planned to be performed by team members
involved in delayed projects

•	 Hidden external failure costs, that is,
reduction of sales as a result of damaged
reputation, increased investments in
sales promotion, under-pricing of tender
bidding to counter the effects of signifi-
cant past delayed completion of projects
due to managerial failures in appraisal
and/or progress control tasks

The cost of internal anomalies: costs resulting
from anomalies detected before the product
or service is delivered to the customer (for
example, rework).

The cost of external anomalies: costs incurred
by the company when the customer discovers
defects (for example, warranty work).

Table 2 gives the definitions of CoSQ categories,
as well as typical costs for each category.

Galin also proposed to separate the share of the
management’s CoSQ such that management could
act on improvements targeted at reducing the cost of
management’s activities. Galin developed the following
cost items for managerial activities (Galin 2004b):

•	 Appraisal and control costs

Costs of conducting contract reviews

Costs for preparation of project and quality
plans and their periodic updating

Costs for performance of regular progress
control

•	 Failure of control costs

Internal managerial failure costs:

•	 Unplanned development costs resulting
from underestimation of resources for
submitted proposals

TABLE 2	 Definition of the CoSQ categories (adapted from Krasner 1998 and Houston 1999)

©2
01

2,
 A

SQ

Major categories Subcategories Definition Typical costs

Prevention cost Quality basis definition Effort to define quality,
and to set quality goals,
standards, and thresholds.
Quality trade-off analysis.

Definition of release criteria for acceptance testing
and related quality standards

Project and process-
oriented interventions

Effort to prevent poor
product quality or
improve process quality

Process improvement, updating of procedures and
work instructions; metric collection and analysis;
internal and external quality audits; training and
certification of employees

Evaluation or
appraisal cost

Discovery of the
condition of the product
nonconformance.

Discovery of the level of
nonconformance

Test, walk-through, inspection, desk-check, quality
assurance

Ensuring the
achievement of quality.

Quality control gating Contract/proposal review, product quality audits, “go”
or “no go” decisions to release or proceed, quality
assurance of subcontractor

Cost of anomalies
or nonconformance

Internal anomalies or
nonconformance

Problem detected before
delivery to the customer

Rework (e.g., recode, retest, rereview, redocument, etc.)

External anomalies or
nonconformance

Problem detected after
delivery to the customer

Warranty support, resolution of complaints,
reimbursement damage paid to customer, domino effect
(e.g. other projects are delayed), reduction of sales,
damage to reputation of enterprise, increased marketing

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

20 SQP VOL. 14, NO. 3/© 2012, ASQ

15939 standard. The measurement model implementa-
tion was conducted in five stages:

•	 Identification of the project tasks related to
the CoSQ (measurement requirements and
resources)

•	 Development of a list of typical tasks related
to the CoSQ (define data measures)

•	 Categorization of the tasks related to the CoSQ
(select and plan measures)

•	 Development and application of weight factors
(define measurement criteria)

•	 Determination of the accuracy of the weighting
rules (define data collection and analysis)

As mentioned previously, a
few papers have been published
on the adoption of these con-
cepts in the software industry,
but very few case studies have
been published by the software
industry itself (Haley 1996;
Galin 2007). A paper by T. J.
Haley of Raytheon (Haley 1996)
illustrates very well the links
between the cost of rework and
the investment needed to reduce
waste in software projects. Haley
also illustrates that a long-term
perspective is needed, as well
as a commitment from senior
management, in order to capture
the benefits. As said by Norman
Augustine (Augustine 1997), “It
costs a lot to build bad products.”

APPROACH USED TO
MEASURE THE CoSQ
This section explains the steps that led to the esti-
mated CoSQ for an 88,000-hour software development
project. The authors had to develop a measurement
model before proceeding with the classification of
the 1100 tasks.

The ISO/IEC 15939 standard (ISO 2007) has been
referred to as a reference to develop measurement
models in software engineering. It describes a set
of related measurement activities that are generally
applicable in all aspects of a software measurement
process, regardless of the specific information needs
of any particular situation.

This ISO standard explains that process measure-
ment consists of four iterative measurement activities
(see Figure 3): establishing an organizational commit-
ment, planning of measurement activities, conducting
the measurement process (measurement data are
collected, stored, and analyzed), and evaluating the
measurement process and measures. Each activity
mentioned by ISO/IEC 15939 is related to specific
tasks that contribute to achieving the purpose and
outcomes of the software measurement process.

The measurement model developed for the project
follows various activities proposed in the ISO/IEC

FIGURE 3	 Software measurement process of ISO/IEC 15939
(ISO 2007)

©2
01

2,
 A

SQ

Core measurement process

Experience base

Measurement requirements User feedback

Information
products

Information
needs

Improvement actions

Plan Performance
information

Evaluation
results

Technical and
management

processes

Plan
measurement

Establish
commitment

Evaluate
measurement

Perform
measurement

TABLE 3	 Representation of BSEP elements

©2
01

2,
 A

SQ

Identification Process element Type

1.1 Primary life-cycle process Life cycle

1.2 Development Process

1.2.7 Code and debug Subprocess

1.2.4 Unit tests Activity

TABLE 4	 Sample registration of a task

©2
01

2,
 A

SQ

WBS element Task name Effort [hours]

Code document Monitoring-unit testing 91.1

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

www.asq.org 21

The analysis and evaluation functions of the
measurement model, and further improvements to
the model, will be presented in a later section.

Stage 1: Identification of project
tasks related to the cost of quality
Table 3 shows the structure of the BSEP. It is com-
posed of the following types, as previously noted:
life cycle, process, subprocess, and activity. These
elements constitute the core components of the
BSEP, and they are considered as inputs for the
design and construction of the measurement model
for the project.

Table 4 shows the organization of the work break-
down structure (WBS) for tasks related to the CoSQ
for the project. Efforts expended on these tasks are
identified and estimated by the project manager.

Tasks and efforts related to CoSQ for the project
are identified and recorded in order to be able to
measure, improve, monitor, and benchmark the CoSQ
for the project.

Stage 2: Development of a list of
typical tasks related to the CoSQ
At this stage, a list with the core BSEP typical tasks
related to the CoSQ is developed for the project. These
tasks are associated with the project life-cycle process,
and are based on the ISO 12207 standard. Table 5 pres-
ents the process, subprocesses, and activities related
to components of project cost and CoSQ (prevention,
evaluation, and rework or nonconformance).

Stage 3: Categorization of
tasks related to the CoQ
At this stage, the BSEP tasks are sorted as follows:
implementation (I), evaluation (E), prevention (P), and
rework (R) (internal and external anomalies). Table 6
provides a classification example for the requirements
traceability task.

TABLE 5	 CoSQ-related BSEP tasks

©2
01

2,
 A

SQ

Primary life-cycle processes

Supply

Development

System requirements analysis

System architectural design

Software requirements analysis

Software architectural design

Software detailed design

Software coding and testing

Software integration

Software validation testing

System integration

System qualification testing

Software deployment

Supporting life-cycle processes

Configuration management

Quality assurance

Verification and validation

Peer reviews

Verification evaluation

Verification and validation reporting

Joint review

Project management reviews

Technical reviews

Problem resolution

Problem report

Organizational life-cycle processes

Management

Estimate the project

Plan the project

Manage risks

Track the project

Infrastructure

Plan infrastructure activities

Establish the project infrastructure

Establish the global infrastructure

Maintain the infrastructure

Training

Plan training activities

Implement training plan

TABLE 6	 Example of classification of the
requirements traceability task

©2
01

2,
 A

SQTask
identification

WBS
element

Task name I E P R

2410 Code Trace requirements - - x -

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

22 SQP VOL. 14, NO. 3/© 2012, ASQ

correctly, weighting rules have been defined. Twenty-

seven rules, as illustrated in Table 7, have been defined in

close collaboration with SDG engineers. As an example,

rule 9 for the test and coding task has been assigned a

weight of 60 percent for implementation and 40 percent

for evaluation.

Stage 4: Development
of weighting rules
In the BSEP, there are activities that belong to more
than one category; for example, the test and coding
task overlaps the evaluation and implementation
CoSQ categories. To ensure that one measures

TABLE 7	 Task weighting rules

©2
01

2,
 A

SQ

Rule
number

Name of rule Typical tasks Implementation Evaluation Prevention Rework

1 Normal task performance Normal project task 100%

2 Process improvement
BSEP, process improvement, Six
Sigma

100%

3 Process audit
Software project and process
audit

100%

4 Requirements traceability Requirements traceability 100%

5 Audit activities Requirements audit 100%

6 Prototyping Prototype 100%

7 Review Design review 100%

8 Testing activities
Software integration testing
activities

100%

9 Testing and coding Software code and test 60% 40%

10 Bench test Bench test 25% 75%

11
Validation, verification
activities

Software validation, verification 100%

12
Problem correction and
coding

Corrections, debugging and final
coding

30% 70%

13 Rework Maintenance 100%

14 Software problem correction Software problem correction 15% 85%

15
Update SRS,SDD, DD, code,
Int., validation, traceability,
and SVRTM

Update SRS, traceability, and
SVRTM

50% 50%

16 SQA SQAP writing and update 30% 40% 30%

17 Training Training of new resources 100%

18
Configuration management
activities

Configuration management 100%

19 Analysis Analysis 100%

20 Test Test 100%

21 Bench development Bench development 85% 15%

22 Acceptance Baseline acceptance 50% 50%

23 Preparation Release preparation 100%

24 Working with the client Working sessions with the client 50% 50%

25 Follow-up Follow-up (all releases) 75% 25%

26 Follow-up and validation
Follow-up and validation (all
releases)

85% 15%

27
Acceptance, debug and test
prototype

Acceptance, debug and test
prototype

100%

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

www.asq.org 23

Stage 5: Determining the
accuracy of weighting rules
The wide variety of actions involved in conducting any
activity led to the following question: At what level
of confidence should one measure CoSQ? To answer
this question, the authors added another component
to the precision of the rules weighting in the model
of quality in the form of a convention, adopted at
task registration:

•	“H” for high precision

•	“M” for medium precision

•	“L” for low precision

The rules are now weighted, and the result of this
process is expressed as a percentage of tasks for each
level of confidence.

Data Model for the
Measurement of CoSQ
The data model is a compilation of all of the compo-
nents previously presented, namely the identification
of activity/confidence level.

This data model is set out in a spreadsheet that
includes, among others, the following four tabs:

•	 Data − Task: This tab includes the data that
characterize: task name, effort, status, number
of the rule, precision, display of the rule, and
measure of the effort of the task (see Table 8).

•	 Analysis − Task: This tab presents the analysis
using the spreadsheet. Histograms give a first
performance of the extended CoSQ.

•	 BSEP versus CoSQ: This tab shows the CoSQ
activities compared to the BSEP process.

TABLE 8	 Examples of cost of software
quality data for three tasks

©2
01

2,
 A

SQ

Task name
Effort measured
(hours)

I E P R

Software problem
correction

883 132 0 0 751

Train simulator-
software code
and test

195 117 78 0 0

Baseline
acceptance

24 0 12 12 0

TABLE 9	 Level of confidence
©2

01
2,

 A
SQ

Rule
number

Rule name
Number of
occurrences

1 Performing normal task 492

2 Process improvement 6

3 Process audit 10

4 Requirements traceability 9

5 Audit activities 47

6 Prototyping 22

7 Review 41

8 Testing activities 36

9 Testing and coding 145

10 Bench test 5

11 Validation, verification activities 93

12 Problem correction and coding 8

13 Rework 11

14 Software problem correction 36

15
Update SRS, SDD, DD , code, Int.,
validation, traceability, and SVRTM

57

16 SQA 3

17 Training 5

18 Configuration management activities 3

19 Analyses 3

20 Test 3

21 Bench development 2

22 Acceptance 25

23 Preparation 27

24 Working with the client 12

25 Follow-up 2

26 Follow-up and validation 3

27 Acceptance, debug and test prototype 1

Total 1107

FIGURE 4	 Distribution of effort in the
88,000-hour project

©2
01

2,
 A

SQ

Implementation 67%

Evaluation 21%

Prevention 2%

Rework 10%

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

24 SQP VOL. 14, NO. 3/© 2012, ASQ

•	 Tasks types (task): This
tab shows the types
extracted from the task
table and the link with
the BSEP. These activi-
ties are associated with
CoSQ categories.

PRESENTATION
AND DISCUSSION
OF RESULTS
The Cost of
Software Quality
As illustrated in Table 9, the
level of confidence assigned
to each rule has resulted in
more than 88 percent of the activities being in the
high category, 11 percent in the medium category,
and only 0.2 percent in the low category. One can
therefore conclude that the CoSQ was measured with
a good level of accuracy.

Cost of Software Quality
Per Category
Figure 4 shows the distribution of development costs
in the various categories of software quality and
implementation cost. The figure reveals that the cost
of rework is 10 percent, the cost of prevention is 2
percent, and the cost of evaluation is 21 percent of
the total cost of development.

At Raytheon (Haley 1996), Haley illustrated the
relationships between the investments/benefits and
the maturity levels of the Capability Maturity Model
for Software (CMM®) (Paulk et al. 1993). At the initial
CMM maturity level, most, if not all, organizations
have no documented process, and no reliable data or
measurement system. When an organization reaches
levels 2 and 3, it has the foundation to measure and
select beneficial process improvement areas. Many
organizations have published the results obtained in
the form of a maturity ladder, showing the relation-
ships between maturity level, quality, productivity,
and project cost. The study at Raytheon showed (see

Figure 5) that, at CMM level 1, the cost of rework in
1987 was about 41 percent of total project cost. Rework
was 18 percent at level 2, 11 percent at level 3, and 6
percent at level 4.

©2
01

2,
 A

SQ

70

60

50

40

30

20

10

0
87 88 89 90 91 92 93 94 95 96

CMM level 1 CMM level 2 CMM level 3 CMM level 4

TCoSQ

Cost of
Conformance

Year

Rework

Rework
Appraisal

Prevention

Pe
rc

en
ta

ge
 o

f
to

ta
l p

ro
je

ct
 c

os
t

FIGURE 5	 CoSQ data at Raytheon (adapted from Haley 1996)

FIGURE 6	 CoSQ at the Motorola Global
Software Group Center in China
(Liu 2007)

©2
01

2,
 A

SQ

After CMMI transition

40%
35%
30%
25%
20%
15%
10%
5%
0%

2003
Before CMMI

transition

2004 2005

CO
Q

 (
%

)

TABLE 10	 Relationship between CMM
maturity levels and cost of
rework (Gibson et al. 2006)

©2
01

2,
 A

SQ

CMM maturity level Percentage of rework

1 ≥ 50%

2 25% to 50%

3 15% to 25%

4 5% to 15%

5 ≤ 5%

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

www.asq.org 25

percent of the total development cost. Based on this
result, for the SDG group, the cost of quality control
is 23 percent of the total cost of development, which
is consistent with previous studies.

Discussion of Results
Table 12 shows that the CoSQ represents 33 percent
of the overall project effort of more than 88,000 hours.
The study conducted by Price Waterhouse shows that
the CoSQ varies between 38 percent and 49 percent
of the total cost of development.

This study, however, excludes the cost of testing
and the resulting anomalies, thereby reducing the
CoSQ, estimated to be between 40 percent and 55
percent of the project cost. The study, conducted at
Raytheon, shows that the CoSQ fluctuated between
55 percent and 67 percent when the company was
at maturity level 1, while it decreased to 40 percent
when it reached maturity level 3. These data from
the software industry validate the results obtained

A study by Gibson, Goldenson, and Kost (2006)
showed that rework varies between 15 percent and
25 percent of the cost of developing CMM maturity
level 3 (see Table 10). The study (Gibson, Goldenson,
and Kost 2006) shows how the implementation of
CMMI impacts schedule, cost performance, product
quality, return on investment, and other factors in
organizations. In the case of the Motorola Global
Software Group in China (Liu 2007), for example, it
was possible to reduce the CoSQ by more than one
third (36.5 percent) from its pre-CMMI baseline (see
Figure 6).

One of the authors of this article collected data on
the CoSQ in their environment from professional engi-
neers, managers, and software professionals, working
in a wide range of application domains, enrolled in
the software engineering master’s program at the
ETS engineering school of Montréal (www-eng.etsmtl.
ca). As illustrated in Table 11, the cost of rework is
about 30 percent. Most of the industrial data were
collected in two large multinational enterprises: one
involved in the transportation sector and the other
in the aerospace sector. The numbers in parentheses
indicate the number of people responding to the
CoSQ survey form.

With regard to the evaluation and prevention
categories, a study by Price Waterhouse (Price
Waterhouse 1988) showed the effort required for
quality control: the sum of the evaluation cost and
the prevention cost is between 23 percent and 34

TABLE 11	 Cost of software quality data from software professionals and managers

©2
01

2,
 A

SQ

Site A
American
Engineers

(19)

Site A
American
Managers

(5)

Site B
European
Engineers

(13)

Site C
European
Engineers

(14)

Site D
European
Engineers

(9)

Course A
2008
(8)

Course B
2008
(14)

Course C
2009
(11)

Course D
2010
(8)

Course E
2011
(15)

Course F
2012
(10)

Cost of
performance

41% 44% 34% 31% 34% 29% 43% 45% 45% 34% 40%

Cost of
rework

30% 26% 23% 41% 34% 28% 29% 30% 25% 32% 31%

Cost of
appraisal

18% 14% 32% 21% 26% 24% 18% 14% 20% 27% 20%

Cost of
prevention

11% 16% 11% 8% 7% 14% 10% 11% 10% 8% 9%

Quality
(Defects/
KLOC)

71 8 23 35 17 403 19 48 35 60 55

TABLE 12	 Distribution of project effort

©2
01

2,
 A

SQ

Implementation Evaluation Prevention Rework

Number of
hours per
category

56,282 20,070 3,142 9,103

Percentage
of project

68% 17% 4% 11%

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

26 SQP VOL. 14, NO. 3/© 2012, ASQ

Distribution Costs of Software
Quality by the Rules of Weighting
To measure the CoSQ, the authors applied the rules
of weighting to each task of a software project. The
analysis of the distribution of cost versus weighting

by the SDG. It should be
noted that the CoSQ of
the SDG is lower than
that estimated in the
two previous studies.
This is because its pro-
cesses were assessed to
be at SEI’s CMM level 3.
Several software compo-
nents developed by this
group are critical; that
is, if faulty, they can
cause fatal injuries. The
development of critical
software requires the
addition of several pre-
vention activities, such
as testing.

Calculation of
the Compliance/
Noncompliance
Ratio
The ratio of compliance to
noncompliance gives the
CoSQ and gives the ratio
between the CoSQ and the
cost of the rework. The
Price Waterhouse study
presents a ratio of 1.2 to
2.0. For this project, the
authors obtained a ratio
of 2.1.

The difference between
these two studies may be
explained by the fact that
the SDG’s cost assessment
is quite high. The authors
recommend lowering the
cost of assessment, while at the same time making
improvements in the area of prevention. The high rate
of prevention can be explained by the fact that the
software developed by Bombardier Transportation
is sometimes critical and demands more prevention
activities.

©2
01

2,
 A

SQ

50,000

45,000

40,000

35,000

30,000

25,000

20,000

15,000

10,000

5,000

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

H
ou

rs
 (

h)

Rules

FIGURE 7	 Distribution of effort by weighting rules

FIGURE 8	 Distribution of effort by type of defect and associated
activity

©2
01

2,
 A

SQ

1,000

900

800

700

600

500

400

300

200

100

0

Defect Enhancement New Feature

Co
de

Cu
st

om
er

 R
eq

ue
st

Da
ta

Do
cu

m
en

ta
tio

n
Ha

rd
w

ar
e

In
te

rf
ac

e/
Ne

tw
or

k
De

­n
iti

on
Ot

he
r

Pl
an

s a
nd

 P
ro

ce
du

re
s

So
ft

w
ar

e
Ar

ch
ite

ct
ur

e
So

ft
w

ar
e

De
sig

n

So
ft

w
ar

e
Re

qu
ire

m
en

ts
St

an
da

rd
s/P

ol
ici

es
Su

pp
lie

r

Sy
st

em
 R

eq
ui

re
m

en
ts

Te
ch

ni
ca

l S
pe

ci­
ca

tio
ns

Fr
eq

ue
nc

y

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

www.asq.org 27

the distribution of costs based on the nature of the
problem and its origin (for example, code, design).

This cost allocation shows that the problems occurring
during the development cycle affect three components:
code, design, and software specifications, while the main
source of the problems lies in the coding phase. Although
they are not high enough, the problems associated
with a “new feature” must be addressed, and are more
commonly found at the level of customer requests and
requirements, and software system requirements. For
issues like improvements, their contributions to the cost
of correction remain low, but it is important that they
continue to be monitored.

Thus, to better control these costs, the activities that
will be most involved in calculating the cost for correcting
problems must be identified, and their sources addressed.

Moreover, an important factor to consider in deci-
sion making is the frequency with which activities are
performed, and the effect that increased investment
would have, which gives an idea about the overall cost
of activity, for example, evaluation activities. This could
be an avenue for future research. Figure 9 shows the
distribution of the frequency of activities.

This distribution, which provides a measure of the
attention paid to activities, can reveal where discrepan-
cies lie. Of all the activities of the development process,
the software validation and testing activity should

allows the examination
of the activities that have
the greatest impact on
the CQL.

Figure 7 shows that the
most significant costs are
associated with rules 8,
9, 11, and 13 and, to a
lesser extent, rules 2, 6,
8, 12, 13, 15, 20, and 21,
while rule 1 represents
the implementation cost.
This is the explanation
of why the cost of evalua-
tion is high compared to
other categories. Rules 8
and 9 are associated with
testing activities and cod-
ing; while rule 8 gives 100
percent of the category
evaluation, rule 9 provides
60 percent of the cost in terms of achievement category
and 40 percent at the category assessment. Rule 11
shows the activities of validation and verification (that
is, activities of assessments) that are represented at
100 percent in the category evaluation.

Rules 13 and 14, associated with recovery activities
and correcting software problems, essentially form
the category of rework. Rules 2 and 6, respectively,
representing a business process improvement activity
and a prototype, belong to the category prevention.
Rule 25, which is a follow-up, is weighted at 75 percent
implementation and 25 percent for prevention.

This analysis shows that, if one wants to affect the
cost associated with each category, either increasing
it or decreasing it, one must do so through actions
on the activities mentioned previously (for all rules).

Cost of Rework Relative to the
Cost of Correcting Problems
In order to analyze the categories and activities
related to the CoSQ, the authors studied the relation-
ship between the type of activity and the cause of a
problem, as recorded on the problem report form
filled out by the SDG engineers. The three causes of
a problem are the following: a defect, an improvement
or an enhancement, or a new feature. Figure 8 shows

FIGURE 9	 Distribution of the frequency of activities, depending on
the type

©2
01

2,
 A

SQ

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

Fr
eq

ue
nc

y
So

ftw
ar

e V
ali

da
tio

n
Te

sti
ng

Op
er

at
io

n
of

 S
er

vic
e

En
gi

ne
er

in
g

Te
st

So
ftw

ar
e

Co
de

 a
nd

 Te
st

So
ftw

ar
e

In
te

gr
at

io
n

Te
sti

ng

Sy
ste

m
 A

rc
hi

te
ct

ur
al

De
sig

n

Sy
ste

m
 In

te
gr

at
io

n
Te

sti
ng

Sy
ste

m
 Q

ua
li­

ca
tio

n
Te

sti
ng

Qu
ali

­c
at

io
n

Te
st

So
ftw

ar
e

Re
qu

ire
m

en
t A

na
lys

is

So
ftw

ar
e

Ar
ch

ite
ct

ur
al

De
sig

n

So
fte

ar
e

De
ta

ile
d

De
sig

n
M

ain
te

na
nc

e
Ac

ce
pt

an
ce

 Te
st

Ro
ut

in
e

Te
st

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

28 SQP VOL. 14, NO. 3/© 2012, ASQ

3.	 Control CoSQ by category. With regard to
categories like the cost of prevention, the
rates should be better controlled. However,
the rate of quality control (that is, the rate
of assessment and the cost of prevention
combined), which is 23 percent, is validated
by the studies cited previously.

		 Since the CoSQ ratio in terms of conformity
to quality is outside the 1.2 to 2.0 range, the
authors recommend that the rate of quality
control of 20 percent be reduced. This could
be achieved by increasing the budget for
prevention activities. This will result in an
increase in prevention activities, a reduced
rate of assessment, and, therefore, a better
quality of products delivered.

		 The analysis gives the highest rates of rework
at 10 percent of the total cost of development.
The authors recommend that this rate be main-
tained and that the effort to change the rate
of assessment and prevention be strengthened,
which will lead to lower recovery efforts.

		 They also recommend that the names
given to tasks and activities be harmonized
and standardized, so when they are regis-
tered, the errors that have sometimes been
made in applying the rules to the CoSQ can
be avoided.

4.	 Control activities related to the correction
of problems. Since defects are found mainly
at the level of software design, software

command more attention on the part of the SDG,
with more than 1500 hours spent on testing. Is there
a way, for example, to add prevention activities while
reducing testing and at the same time maintaining
at least the same level of quality?

RECOMMENDATIONS
The authors’ recommendations, following an analysis
of the data on the CoSQ, are presented here. These
can help control spending on the CoSQ, as well as
the cost of development or maintenance of software.

1.	 Continue data collection. The first recom-
mendation is to continue data collection
using procedures and methods (for example,
use of tools, database structures) within
the SDG.

2.	 Continue CoSQ measurement. The rate of 33
percent, representing the cost incurred by the
software quality group SDG, is comparable to
rates commonly found in the software indus-
try. Studies conducted by Price Waterhouse,
as well as by Dion (1992) and Krasner (1998),
both confirm and validate the data model that
is introduced here. However, it is important
to note that continuing to measure CoSQ
would be a good initiative. It is important to
control the overall CoSQ, but without making
budget cuts to CoSQ-related activities. The
best would be distributing the CoSQ over
the categories.

©2
01

2,
 A

SQ

Entry Criteria

Project plan approved

Exit Criteria

CoQ project report approved

Tasks OutputsInputs

Project WBS 1. Identify CoQ tasks, using Project Plan and WBS

2. Record CoQ effort by category

3. Apply weighting rules

4. Compute the CoQ

5. Develop �ndings and recommendations

6. Review �ndings and recommendations with management

7. Produce �nal CoQ Project Report

8. Archive Report

CoQ measurement process CoQ report

Typical CoQ list of tasks Findings

Weighting rules Recommendations

CoQ data model

Measures
Effort (staff-hours)

FIGURE 10	 Top level modified ETVX description of the process to measure the CoSQ

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

www.asq.org 29

goals more effectively (as discussed at the beginning
of this article), it would be appropriate to:

•	 Check the definitions of the words composing
the names of elementary tasks used in the
capture of effort during the project. This will
have a significant impact in terms of reducing
the number of weighting rules, which will in
turn allow better control of the activities and
of the CoSQ.

•	 Redefine and improve the accuracy of some
of the weighting rules.

•	 Assess the level of satisfaction of high-level
management by introducing the CoSQ to
the SDG and analyze its impact in terms of
improving other processes.

•	 Measure the CoSQ for other SDG projects and
compare the results.

•	 Find the extent of CoSQ implementation at
other Bombardier Transportation sites. Collect
data from those sites and conduct a compara-
tive analysis based on several criteria, such as
the type of software, organizational culture,
the size of the development group, the level
of maturity, and so on.

A very small entity (VSE) is defined in (ISO
2011a) as an enterprise, organization, department,
or project having up to 25 people. VSEs developing
software are very important to the world economy,
as their software components are often integrated
into the products of larger entities. Many interna-
tional standards and models have been developed to
capture proven engineering practices. However, these
standards and models were not designed for VSEs and
are consequently difficult to apply in such settings.
An ISO Working Group, ISO/IEC JTC1 SC7 WG24,
was established in 2005 to help VSEs by developing a
set of software engineering standards and guidelines
that are specifically tailored to the needs of VSEs
(Laporte, Alexander, and O’Connor 2008a; 2008b).
A standard for VSEs, ISO/IEC 29110 (ISO 2011b),
and a free engineering and management guide (ISO
2011c) have been published recently. Most of the
CoSQ data illustrated in Table 11 were collected
from software professionals working in VSEs. The
work described in this article could be used by the
ISO working group to help VSEs measure the CoSQ
and guide them in reducing the amount of rework.

requirements, and code, it would be wise
to encourage actions to reduce these by
focusing on prevention, a view that sup-
ports the recommendation made previously
for increased investment in this category.
Regarding the two categories of rework,
internal and external, it would be beneficial
to undertake appropriate remedial actions
such as improving the efficiency of anomaly
detection by implementing peer reviews.

5.	 Present CoSQ measurement results. The
authors recommend that the results of the
work undertaken in this study be presented
to the entire project team with the aim of
providing it with avenues for future research.
It would be desirable to establish a scoreboard
of the costs associated with software quality
and an improvement program showing the link
between the activities of the program and the
CoSQ. These results should be presented to
management to enable them to develop better
budgets for business process improvement.

6.	 Measure CoSQ at other Bombardier
Transportation sites. The authors recom-
mend that an individual in the software quality
assurance group or the process improvement
group be permitted to launch a measurement
CoSQ. The objectives of the implementation
of this process would be:

•	 To develop software according to a CoSQ
measurement process

•	 To quantify the components of the CoSQ

•	 To identify opportunities for reducing
costs

•	 To provide a basis for budget development
activities and quality

•	 To use the results to improve processes

The main tasks, inputs, and outputs of the CoSQ
measurement process are described in Figure 10
using the modified ETVX “Entry, Task Validation eXit”
process notation (Radice 1985).

FUTURE WORK
The measure of CoSQ presented in this article is based
on data from a single large project. In order to improve
the measurement of CoSQ and achieve management

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

30 SQP VOL. 14, NO. 3/© 2012, ASQ

REFERENCES

Augustine, N. 1997. Augustine’s laws, sixth edition. Reston, VA: AIAA.

Campanella, J. 1990. Principles of quality costs, 3rd ed. Milwaukee:

American Society for Quality Control.

Charette, R. N. 2005. Why software fails. IEEE Spectrum 42, issue 9.

Dion, R. 1992. Elements of a process improvement program, Raytheon.

IEEE Software 9, no. 4 (July):83-85.

Dion, R. 1994. Elements of a Successful Process Impovement Paradigm.
Presentation to the Montreal Software Process Improvement Network

(SPIN), Montréal, Canada, 25 May.

Feigenbaum, A. V. 1956. Total quality control. Harvard Business Review 34,

no. 6 (November-December):93-101.

Galin, D. 2004a. Software quality assurance—From theory to implementa-
tion. Upper Saddle River, NJ: Pearson Education Limited.

Galin, D. 2004b. Toward an inclusive model for the costs of software qual-

ity. Software Quality Professional 6, no. 4:25-31.

Galin, D., and M. Avrahami. 2007. Benefits of a higher quality level of

the software process: Two organizations compared. Software Quality
Professional 9, no. 4 (September):27-35.

Gibson, D. L., D. R. Goldenson, and K. Kost. 2006. Performance results
of CMMI®-based process improvement. Technical Report (CMU/SEI-

2006-TR-004, ESC-TR-2006-004). Pittsburgh: Software Engineering

Institute, Carnegie Mellon University.

Haley, T. J. 1996. Software process improvement at Raytheon. IEEE
Software 13, no. 6:33-41.

Houston, D. 1999. Cost of software quality: Justifying software pro-

cess improvement to managers. Software Quality Professional 1, no. 2

(March):8-16.

ISO/IEC 15939:2007. 2007. Information Technology−Software Engineering−
Software Measurement Process. Geneva, Switzerland: International

Organization for Standardization.

ISO/IEC 29110-1:2011. 2011a. Software Engineering—Lifecycle Profiles

for Very Small Entities (VSEs)—Part 1: Overview. Geneva: International

Organization for Standardization (ISO). Available at: http://standards.iso.

org/ittf/PubliclyAvailableStandards/c051150_ISO_IEC_TR_29110-1_2011.zip.

ISO/IEC 29110-4-1:2011. 2011b. Software Engineering—Lifecycle Profiles

for Very Small Entities (VSEs)—Part 4-1: Profile specifications: Generic

profile group. Geneva: International Organization for Standardization

(ISO). Available at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=51154.

ISO/IEC TR 29110-5-1-2:2011. 2011c. Software Engineering—Lifecycle

Profiles for Very Small Entities (VSEs)—Part 5-1-2: Management

and engineering guide: Generic profile group: Basic profile. Geneva:

International Organization for Standardization (ISO), 2011. Available at:

http://standards.iso.org/ittf/PubliclyAvailableStandards/c051153_ISO_IEC_

TR_29110-5-1_2011.zip.

CONCLUSIONS
In the field of software engineering, the concept of
the measure has become very important, and is, in
fact, fundamental, as it is considered a measure of a
company’s performance. The ISO/IEC 15939 standard
is a valuable reference for implementing the software
measurement process in companies. This study
presented the Bombardier Transportation SDG’s
measure of the CoSQ.

The authors added weighting rules to their mea-
surements, which identify the level of confidence of
these measurements by quantifying their accuracy.
They intend to improve these rules in future work.
Analysis shows that the CoSQ represents 33 percent
of the overall project cost. To make an objective
comparison, this analysis looked at steps taken by
researchers in companies at the same level of maturity.
This comparison shows that the CoSQ of the project is
similar to published data, or even slightly lower than
these data. This can be explained by the fact that
the SDG process conformed to level 3 maturity for
more than four years. The other aspect that cannot
be overlooked is the cost of takeovers, which identify
activities that have the greatest impact in terms of
correcting problems.

It would be equally beneficial to redefine and
improve the accuracy of some of the weighting rules,
and it would be interesting to control the definition of
tasks in the capture of effort data during a project. This
would have a significant impact in terms of reducing
the number of weighting rules, which would in turn
allow better control of activities and CoSQ. It also
remains important to assess the level of satisfaction
of high-level management resulting from the introduc-
tion of CoSQ SDG and analyze its impact in terms of
improving the process.

Other avenues for improving the CoSQ process are
possible, such as staff training, automation testing,
and so on. Other Bombardier Transportation sites, as
well as many VSEs, could benefit from the experience
gained from the CoSQ results of this project.

Acknowledgments

The authors acknowledge the invaluable collaboration of Yves Laperrière

and Sylvain Hamel of Bombardier Transportation in St-Bruno (Québec).

Measuring the Cost of Software Quality of a Large Software Project at Bombardier Transportation: A Case Study

www.asq.org 31

is the editor of the ISO/IEC JTC1 SC7 Working Group 24 tasked with

developing ISO/IEC 29110 systems and software engineering standards

and guides for very small entities. He is a member of INCOSE, IEEE, PMI,

and the professional association of engineers of the Province of Québec.

He is the co-author of two books on software quality assurance. Laporte

can be reached by email at Claude.Y.Laporte@etsmtl.ca.

Nabil Berrhouma has more than 15 years of experience in software

development. He has experience in many aspects of IT and the software

development life cycle. He is a business and functional analyst. Berrhouma

has helped organizations develop and implement SDLC methodologies,

especially in the analysis and quality fields. He has a master’s degree

in software engineering from the École de technologie supérieure of

Montréal (Canada). He is interested in development and operational

processes, and he is a co-author of an article about ITIL.

Mikel Doucet is an international director for Bombardier Transportation.

He is responsible for the ORBIFLO™ wayside management product

development and commercialization. Previously he was responsible

for the Center of Competence in Software Engineering at Bombardier

Transportation. This Competency Center covers nearly 1000 people in

12 countries and was responsible for defining and deploying common

processes and tools, performing risk assessment, addressing strategic

mandates, and supporting bids/projects. Before joining Bombardier,

Doucet held various software engineering positions in industry. He

received a master’s degree in engineering management and a bachelor’s

degree in mechanical engineering from the University of Sherbrooke

(Canada).

Edgardo Palza-Vargas has more than 15 years of experience as a profes-

sor, researcher, and consultant. His concentration covers domains such

as software engineering, MIS, and TI. Palza’s current research activities

cover artificial intelligence applied to management (health, finance, and

marketing), business intelligence (data mining/data warehouse), IT gover-

nance, and business strategies. He has published several books, chapters,

and articles in journals and international conferences. He is a member of

the editorial board, a reviewer, and chairperson for international confer-

ences. Palza has implemented business and IT solutions for organizations

such as Nokia, Ericsson Research Canada, John Hancock, NASA IV&V,

World Bank, Bombardier, Cirque du Soleil, and CGI.

Karg, L. M., M. Grottke, and A. Beckhaus. 2011. A systematic literature

review of software quality cost research. Journal of Systems and Software
84, no. 3 (March):415-427.

Krasner, H. 1998. Using the cost of quality approach for software.

Crosstalk—The Journal of Defence Software Engineering 11, no. 11

(November).

Laporte, C. Y., S. Alexandre, and A. Renault. 2008a. The application of

international software engineering standards in very small enterprises.

Software Quality Professional 10, no. 3, (June).

Laporte, C. Y., S. Alexandre, and R. O’Connor. 2008b. A software engineer-

ing lifecycle standard for very small enterprises. EuroSPI 2008, CCIS 16,

129-141,

Liu, Angel Qi. 2007. Motorola Software Group’s China Center: Value added

by CMMI, Data & Analysis Center for Software, Department of Defense.

Software Tech News 10, no. 1 (March):19-23.

Mandeville, W. A. 1990. Software cost of quality. In Proceedings of the IEEE
Journal on Selected Areas on Communications 8, no. 2:315.318.

Paulk, M., B. Curtis, M. B. Chrissis, and C. Weber. 1993. Capability

Maturity Model for Software, version 1.1 (CMU/SEI-93-TR-24). Pittsburgh:

Software Engineering Institute, Carnegie Mellon University.

PMI. 2008. A Guide to the Project Management Body of Knowledge (PMBOK®

Guide), fourth edition. Newton Square, PA: Project Management Institute.

Price Waterhouse Report. 1988. Software quality standards: The costs and
benefits. UK Department of Trade and Industry.

Radice, R. 1985. A programming process architecture. IBM Systems Journal
24, no. 25.

Slaughter, S.A., D. E. Harter, and M. A. Krishnan. 1998. Evaluating the cost

of software quality. Communications of the ACM 41, no. 8:10.17.

BIOGRAPHIES

Claude Y. Laporte is a professor, since 2000, at the École de technologie

supérieure, an engineering school, where he teaches software engineering.

His research interests include software process improvement in small and

very small organizations and software quality assurance. He has worked

in defense and transportation organizations for more than 20 years. He

