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Abstract

In a real situation, the choice of the best representation
R(y) for the implementation of a signature verification
system able to cope with all types of handwriting is a very
difficult task. This study is oviginal in that the design of the
integrated classifiers E(x) is based on a large number of
individual classifiers e, (x) (or signature representations
R(y)) in an attempt to overcome in some way the need for
Jeature selection. In this paper, the authors present a first
systematical evaluation of a multi-classifier-based approach
Jor off-line signature verification. Two types of integrated
classifiers based on kNN or minimum distance classifiers
and 15 types of representation related to the ESC used as a
shape factor have been evaluated using a signature database
of 800 images (20 writers x 40 signatures per writer) in the
context of random forgeries.

1: Introduction

Shape factor definition is an ongoing problem in the field
of pattern recognition. This problem also applies to
handwritten signature verification, therefore [1], which mainly
characterized by the following: the feature vectors have a high
dimensionality, the number of reference signatures already
available for training is normally very low (3 to 6 in practice)
and the genuine signature shape is characterized by high intra-
class variability over time. Consequently, the design of a
signature verification system based on a single shape factor or
a single shape representation is not a trivial task.

One solution is to design a class of shape factor tailor-
made for the signature verification problem [2] and to build an
integrated classifier permitting the cooperation of several
classifiers. Combining classifiers is not new in the field of
pattern recognition and has been investigated by several
authors working in the field of character recognition. Several
methods have been proposed and evaluated [3], but the voting
principle seems more appropriate for the signature
verification problem because we have to design one integrated
classifier per writer enrolled in the verification system,

Combining classifiers adapted to a specific shape factor
permits the design of a flexible integrated classifier in the
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sense that the choice of the best shape factor (e.g. feature
selection) is overcome; that is to say, pertinent shape factors
are chosen dynamically and consequently the verification
system can be adapted to handwriting.

We propose in this paper the first systematical evaluation
of a multi-classifier-based approach for off-line signature
verification. A class of shape factors has been defined and
experimental results presented in a companion paper [2]. The
experimental protocol and signature database used for the
experimentation phase of this work are the same as those used
for the individual evaluation of the proposed 15 signature
representations R(y).

2: Definition of integrated classifiers E(x)

Following Xu et al. [3], the case investigated in this work
is related to a Type 1 cooperation problem, that is to say, the
output of each classifier e corresponds to abstract information
like a label j related to class C; . Let K represent the classifiers
ey, k-1,...,.K which are responsible for assigning the label j,

to the unknown observation x, i.e. the production of the event
e (x)-j,- Here, the K classifiers are all of the same type: kNN

[Figure 1] or minimum distance classifiers {Figure 2]. The
problem can be stated as the combination of K events e (x)=j,

for the definition of an integrated classifier E, which will be
responsible for the attribution of a final label j to the unknown
observation x, i.e. E(x)<, jeA U{M+1}. For the ANN
classifiers depicted in Figure 1, label j, corresponds to class C,
if &® > k® and inversely to class C, if £® > £®;

otherwise the unknown observation x is rejected (j,=M+1).
The architecture of a kNN-based integrated classifier and that
of a minimum-distance-based integrated classifier are
depicted in Figures 1 and 2 respectively. Each block R,
represents a bar mask representation R(y) based on the
extended shadow code as defined and evaluated in [2]. The

same learning or comparison sets ( 51(2.,.. or Sf}) are used

for each individual classifier e, in the proposed architectures.
This greatly diminishes the number of reference signatures
needed for the implementation of integrated classifiers

EO(x) . For the sake of clarity, the notation E(x) will be"



used in the following paragraphs as an integrated classifier
assigned to a specific writer (i).
The event e (x)-i could be represented by the

characteristic function

1, when ex) = i AND leA

TyxeC) =

0, otherwise.
The general formulation of the decision rule based on the
voting principle is [3]
A if [T xeCj ) = max,,, Ty(xeC)] 2 (¢ K)

M:1, otherwise.

E®) -

where
K

TyxeC) = Y, TyxeC), il, ., M.
k1 .

A value of & = 0.5 corresponds to the simple majority rule and
a value of o = 1.0 states that a decision made by an integrated
classifier E(x) requires the unanimity of all individual
classifiers ¢,(x). Here, we have [A| = M - 2 classes.

3: Experimentation

The proposed signature verification system has been tested
using a standard signature database of 800 images (40
signatures written by 20 individuals). The handwritten
signatures were written in a 3x12 cm rectangle, using the
same type of writing tool (a Pilot Fineliner with flexible felt tip
and black ink) and sheets of white paper. Let R be the
reference database related to the first 20 signatures of each
writer (| R| =400 ), and T be the test database which is related
to the last 20 signatures of each writer with | T|-400 .

Fifteen representations R(y) have been defined and
evaluated using a kNN classifier with vote and a minimum
distance classifier [2]. For each classifier tailor-made for a
representation R(y), the performance of the verification
system is reported in terms of Type I (¢, false rejection of
genuine signatures) and Type II (e,, false acceptance of
random forgeries) error rates evaluated for the 20 writers. The
total error rate €, of a verification system is expressed in terms
of €,, €, and P[w], the a priori probabilities of classes w,. This
probability is set to 0.5 in our case: €, = ((€; x P[w,]) + (¢, X
Plw,)).

The previous experiments were therefore repeated 25
times for each signature verification system and the

observations of class w,, that is to say, the subsets of Sf?m

and Sg)m, were redefined randomly following our standard

protocol. In the case of the minimum distance classifier, the
effect, on the global performance of the verification system, of
the choice and number of reference signatures (class ) in

1G]

the definition of sets $,,r were also taken into account.

The mean performances of the signature verification
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systems (e.g. the mean total error rate _e:) resulting from the

performance evaluation on 25 iterations of representations
R(a) to R(0) used for both types of classifiers, for a total of
5625 individual experiments, are depicted in Figures 3 and 4
(see the individual labels) with parameters k-{1,3,5,7,9}

for the kNN classifiers, and with 1 < N, =210 for the

minimum distance classifiers. At first glance, it is clear that
verification systems built around kNN classifiers outperform
those based on minimum distance classifiers for all
representations R(y) under study. As an example, the mean

total error rate E_t varies in the (0.010% - 2.156%) range of

values for the /NN classifier [Figure 3] and in the (0.782% -
4.524%) range of values for the minimum distance classifier
using N_ =6 reference signatures [Figure 4].

3.1: Experiment 1

The goal of this experiment is to numerically evaluate the
integrated classifiers E(x} [Figures 1-2] using all 15
representations R(y) related to the extended shadow code [2].
In this first experiment, the cooperation of the K=15 classifiers
is achieved with the help of the voting principle using the
simple majority rule (e = 0.5). Experimental results depicted
in Figures 3 and 4 (solid line) show that the mean performance
obtained with mtegrated classifiers E(x) is as good as or better
than the mean performance observed with the better individual

classifier e,(x). For example, the mean total error rate e_z
observed with representation R(n) and the /NN classifier is
equal to 0.010% (040.015%)) [Figure 3]. This result is almost
the same as that obtained with the integrated classifier £(x),
which shows a mean total error of 0.023% (0+0.036%) if
related dispersions in the data are taken into account.
Consequently, we could say that the design of integrated
classifiers E(x) is a good method to employ in the
implementation of signature verification systems, making it
possible to overcome the difficult task of feature selection,
provided that the individual performance obtained with
representations R(y) is good enough.

3.2: Experiment I1

Starting with the worst 3 representations R(y) related to
both types of integrated classifiers under study, the experiment
consists in implementing several signature verification
systems with the sequential addition of the next 2 most
powerful individual classifiers e,(x), that is to say, integrated
classifiers E(x) with K, the number of individual classifiers,
taking one of the values in  the set

K-{3,5,7,9,11,13,15}. Using the voting principle with
the simple majority rule (¢ = 0.5), experiments made with
both types of individual classifiers e (x) confirm the hypothesis
that the addition of better individual classifiers in the
implementation of integrated classifiers E(x) shows, an



average, that this produces a better performance than that
obtained with the best individual classifier ¢,(x) used in the
implementation of E(x) [Figures 5-6]. This is especially true
when individual classifiers e,(x) are not correlated, and seems
to be true when the extended shadow code is used as a class
of shape factor. The used of integrated classifiers for the
implementation of signature verification systems is
particularly interesting when the performance of individual
classifiers is not too high, as in the case of integrated
classifiers based on minimum distance classifiers [Figure 6].
As an example, the experiment carried out with integrated
classifiers based on representations R{a,f,g} shows a mean

total error rate e—t - of 2.58% (0+0.37%), which is very

powerful when compared to the mean total error rate obtained
with the best individual minimum distance classifier based on
representation R(g) which is equal to 3.83% (0+0.56%).
The second experiment consists in combining individual
classifiers e, x) in the reverse order, that is to say, starting
with the best 3 classifiers, and then adding the next 2, and so
on, with K-{3,5,7,9,11,13,15}. This 1s repeated for
both types of classifiers, with the corresponding experimental
results depicted in Figures 7 and 8. It is very interesting to
note that the addition of less powerful classifiers did not
significantly disturb the mean performance of verification
systems based on both types of integrated classifiers £(x). In
the case of integrated classifiers E(x) based on the
combination of /NN classifiers [Figure 7], the variation in the

mean total error rates Z:; = could be explained by the fact that

the best 2 individual classifiers based on representations R(n)
and R(0) are highly correlated. In other cases, the addition of
less powerful individual classifiers has always shown only a
mild influence on the global performance of both types of
integrated classifiers E(x).

From these experiments, we can conclude that the addition
of more powerful individual classifiers e,x) (when
implementing integrated classifiers) enhances the global
performance of verification systems whenever they are not
correlated. For the same reasons, the addition of less powerful
classifiers does not destroy the global performance of
integrated classifiers E¢x). This is very important in practice
because the problem of feature selection might be overcome
if the performance of individual classifiers is good enough.

3.3 Experiment I11

Once the results of experiments I and II had been
obtained, an attempt was made to characterize signature
verification systems in terms of simple-rejection rule
definitions. The numerical results obtained with integrated
classifiers based on /NN classifiers and on the minimum
distance classifiers using N, ; = 6 reference signatures are
reported in Figures 9 and 10 respectively (see the dashed-lines
labeled a). Using the majority rule with & = 13/15, the
performance evaluation of both verification systems
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corresponds to
[(E: - 0.004% (0£0.010%), R, = 0.732% (0+0.186%)] and

[e, - 0.13% (0£0.11%), R 452% (0%0.54%)]
t

respectively. In practice, it is not always easy to select the best
decision threshold ¢. Moreover, this scheme makes use of all
15 representations, which is a very costly solution for real
implementations.

Now, the question is: Is it advantageous to use all 15
representations and an arbitrary threshold e, or to build an
integrated classifier E(x) based on a subset of individual
classifiers e,(x) and the simple unanimity rule for the
combination of classifiers? In this way, starting with the best
individual classifier e, x), an attempt was made to
characterize both signature verification systems. These
experimental results are represented by the solid lines (b) in
Figures 9 and 10. Using the unanimity rule and the best K=5
individual classifiers, the performance evaluation of both

verification systems corresponds to [(Zt = 0.004% (0.010%),
R, - 0.183% (0.058%)] and [¢, = 0.05% (0.06%), R, -

2.88% (0.51%)] respectively. The same experiment was
conducted, but in the reverse order, that is to say, the worst
individual classifier was used first, and the next best classifiers
were added sequentially. Here, we can observe that the global
performance of both systems is enhanced by the addition of

better classifiers, at the expense of higher rejection rates R,

t

(see the solid lines ¢ in Figures 9 and 10).

We can therefore conclude from these experiments that the
unanimity rule requires some sort of feature selection for the
performance optimization of integrated classifiers.
Consequently, it seems preferable to take into account a large
number of individual classifiers when implementing
verification systems based on the concept of integrated
classifiers, and to settle decision threshold & properly.

4: Conclusion

The extended shadow code used as a shape factor seems
discriminant enough for the signature verification problem in
the elimination of random forgeries when the resolution of the
bar mask array is high enough (see R(n) and R(o) in [2]).
Moreover, the use of integrated classifiers permits the
implementation of signature verification systems without the
a priori feature selection that results in a single shape
factor. This scheme also permits the design of more general
verification systems tailor-made for all types of handwriting.
Future work will be directed towards the evaluation of this
concept on a very large signature database.
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